Question 5.2: The position of an earth satellite is first determined to be...
The position of an earth satellite is first determined to be r _{1}=5000 \hat{ I }+10000 \hat{ J }+2100 \hat{ K }( km ). After one hour the position vector is r _{2}=-14600 \hat{ I }+2500 \hat{ J }+7000 \hat{ K }( km ). Determine the orbital elements and find the perigee altitude and the time since perigee passage of the first sighting.
Learn more on how we answer questions.
We first must execute the steps of Algorithm 5.2 in order to find v _{1} \text { and } v _{2}.
Step 1:
r_{1}=\sqrt{5000^{2}+10000^{2}+2100^{2}}=11375 km
r_{2}=\sqrt{(-14600)^{2}+2500^{2}+7000^{2}}=16383 km
Step 2: assume a prograde trajectory:
r _{1} \times r _{2}=(64.75 \hat{ I }-65.66 \hat{ J }+158.5 \hat{ K }) \times 10^{6}
\cos ^{-1} \frac{ r _{1} \cdot r _{2}}{r_{1} r_{2}}=100.29^{\circ}
Since the trajectory is prograde and the z component of r _{1} \times r _{2} is positive, it follows from Equation 5.26 that
Δθ = 100.29°
Step 3:
A=\sin \Delta \theta \sqrt{\frac{r_{1} r_{2}}{1-\cos \Delta \theta}}=\sin 100.29^{\circ} \sqrt{\frac{11375 \cdot 16383}{1-\cos 100.29^{\circ}}}=12372 kmStep 4:
Using this value of A and Δt =3600s, we can evaluate the functions F(z) and F'(z) given by Equations 5.40 and 5.43, respectively. Let us first plot F(z) to get at least a rough idea of where it crosses the z axis. As can be seen from Figure 5.4, F(z)=0 near z =1.5. With z_{0}=1.5 as our initial estimate, we execute Newton’s procedure, Equation 5.45,
F(z)=\left[\frac{y(z)}{C(z)}\right]^{\frac{3}{2}} S(z)+A \sqrt{y(z)}-\sqrt{\mu} \Delta t (5.40)
z_{i+1}=z_{i}-\frac{F\left(z_{i}\right)}{F^{\prime}\left(z_{i}\right)} (5.45)
z_{1}=1.5-\frac{-14476.4}{362642}=1.53991
z_{2}=1.53991-\frac{23.6274}{363828}=1.53985
z_{3}=1.53985-\frac{6.29457 \times 10^{-5}}{363826}=1.53985
Thus, to five significant figures z =1.5398. The fact that z is positive means the orbit is an ellipse.
Step 5:
Step 6:
Equations 5.46 yield the Lagrange functions
f=1-\frac{y}{r_{1}}=1-\frac{13523}{11375}=-0.18877
g=A \sqrt{\frac{y}{\mu}}=12372 \sqrt{\frac{13523}{398600}}=2278.9 s
\dot{g}=1-\frac{y}{r_{2}}=1-\frac{13523}{16383}=0.17457
Step 7:
v _{1}=\frac{1}{g}\left( r _{2}-f r _{1}\right)=\frac{1}{2278.9}[(-14600 \hat{ I }+2500 \hat{ J }+7000 \hat{ K })-(-0.18877)(5000 \hat{ I }+10000 \hat{ J }+2100 \hat{ K })]
v _{1}=-5.9925 \hat{ I }+1.9254 \hat{ J }+3.2456 \hat{ K }( km )
v _{2}=\frac{1}{g}\left(\dot{g} r _{2}- r _{1}\right)=\frac{1}{2278.9}[(0.17457)(-14600 \hat{ I }+2500 \hat{ J }+7000 \hat{ K })-(5000 \hat{ I }+10000 \hat{ J }+2100 \hat{ K })]
v _{2}=-3.3125 \hat{ I }-4.1966 \hat{ J }-0.38529 \hat{ K }( km )
Step 8:
Using r _{1} \text { and } v _{1}, Algorithm 4.1 yields the orbital elements:
h = 80 470km²/s
a = 20 000km
e = 0.4335
Ω = 44.60°
i = 30.19°
ω = 30.71°
\theta_{1} = 350.8°
This elliptical orbit is plotted in Figure 5.5. The perigee of the orbit is
Therefore the perigee altitude is 11 330 − 6378 = 4952km.
To find the time of the first sighting, we first calculate the eccentric anomaly by means of Equation 3.10b,
E_{1}=2 \tan ^{-1}\left(\sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2}\right)=2 \tan ^{-1}\left(\sqrt{\frac{1-0.4335}{1+0.4335}} \tan \frac{350.8^{\circ}}{2}\right)
=2 \tan ^{-1}(-0.05041)=-0.1007 rad
Then using Kepler’s equation for the ellipse (Equation 3.11), the mean anomaly is found to be
M_{e_{1}}=E_{1}-e \sin E_{1}=-0.1007-0.4335 \sin (-0.1007)=-0.05715 radso that from Equation 3.4,the time since perigee passage is
M_{e}=\frac{\mu^{2}}{h^{3}}\left(1-e^{2}\right)^{\frac{3}{2}} t (3.4)
t_{1}=\frac{h^{3}}{\mu^{2}} \frac{1}{\left(1-e^{2}\right)^{\frac{3}{2}}} M_{e_{1}}=\frac{80470^{3}}{398600^{2}} \frac{1}{\left(1-0.4335^{2}\right)^{\frac{3}{2}}}(-0.05715)=-256.1 sThe minus sign means there are 256.1 seconds until perigee encounter after the initial sighting.

