Question 17.9: The rectangular-cross-section header mentioned in Example 17...

The rectangular-cross-section header mentioned in Example 17.7 is made according to ASME Code, VIII-1, rules. What are the bending stresses at the midpoints of both the short side and the long side?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Knowns: H =7.25 in., h=14 in., t =1 in., c=0.5 in., and E =1.0. Calculate 𝛼, I, and K as follows:

\alpha=\frac{H}{h}=\frac{7.25}{14} =0.5179

I=\frac{t^{3}}{12}=\frac{(1)^{3}}{12} =0.0833

K=\left(\frac{I_{2}}{I_{1}}\right) \alpha=\frac{0.0833(0.5179)}{0.0833} =0.5179

Calculate the bending stress at the midpoint of the short side using Eq. (17.33) and Table 17.1, second equation:

\left(S_{ b }\right)_{ N }=\frac{P c}{12 I_{1}}\left[1.5 H^{2}-h^{2} \frac{1+\alpha^{2} K}{1+K}\right]                       (17.33)

\left(S_{ b }\right)_{ N }=\frac{(150)(0.5)}{12(0.0833)}\left[1.5(7.25)^{2}-(14)^{2} \frac{1+(0.5179)^{3}}{1+0.5179}\right]

\left(S_{ b }\right)_{ N } = 5120 psi.

Calculate the bending stress at the midpoint of the long side using Table 17.1, first equation:

\left(S_{ b }\right)_{ M }=\frac{(150)(0.5)(14)^{2}}{12(0.0833)}\left[1.5-\frac{1+(0.5179)^{3}}{1+0.5179}\right]

= 11,020 psi.

 

Table 17.1 Bending stress values in rectangular headers.

Figure Location of weld between Bending stress at joint, \pm\left(S_{b}\right)_{j} (psi)
17.3a M and Q \frac{P c}{12 I_{2}}\left\{h^{2}\left[1.5-\left(\frac{1+\alpha^{2} K}{1+K}\right)\right]-6 d_{ j }^{2}\right\}
17.3a N and Q \frac{P_{c}}{12 I_{1}}\left[1.5 H^{2}-h^{2} \frac{\left(1+\alpha^{2} K\right)}{1+K}-6 d_{ j }^{2}\right]
17.3b M and Q \frac{P c}{2 I_{22}}\left\{\frac{h^{2}}{2 N}\left[\left(K_{2}-k_{1} k_{2}\right)+\alpha^{2} k_{2}\left(K_{2}-k_{2}\right)\right]-\frac{h^{2}}{4}+d_{ j }^{2}\right\}
17.3b M_{1} and Q_{1} \frac{P c}{2 I_{2}}\left\{\frac{h^{2}}{2 N}\left[\left(K_{1} k_{1}-k_{2}\right)+\alpha^{2} k_{2}\left(K_{1}-k_{2}\right)\right]-\frac{h^{2}}{4}+d_{ j }^{2}\right\}
17.3c A and B \frac{c}{I_{1}}\left(M_{ A }+\frac{P d_{ j }^{2}}{2}\right)
17.3c D and C \frac{c}{I_{1}}\left[M_{ A }+\frac{P}{2}\left(L^{2}+2 a L-2 a l_{1}-l_{1}^{2}+d_{ j }^{2}\right)\right]
17.3d M and Q \frac{P p h^{2}}{24 Z_{21}}\left[3-2\left(\frac{1+\alpha_{1}^{2} k}{1+k}\right)-\frac{12 d_{ j }^{2}}{h^{2}}\right]
17.3d N and Q \frac{P p}{24 Z_{1}}\left[3 H^{2}-2 h^{2}\left(\frac{1+\alpha_{1}^{2} k}{1+k}\right)-12 d_{j}^{2}\right]
17.3e A and B \frac{1}{Z_{21}}\left(M_{ A }+P \frac{p d_{ j }^{2}}{2}\right)
17.3e B and C \frac{c}{I_{2}}\left(M_{ A }+P \frac{p d_{ j }^{2}}{2}\right)
17.3e F and E \frac{1}{Z_{11}}\left\{M_{ A }+P \frac{p}{2}\left[\left(L+L_{11}\right)^{2}+2 a\left(L+L_{11}-l_{1}-l_{11}\right) -\left(l_{1}+l_{11}\right)^{2}+d_{ j }^{2}\right]\right\}
17.3e E and D \frac{c}{I_{1}}\left\{M_{ A }+P \frac{p}{2}\left[L^{2}+2 L L_{11}+L_{11}^{2}-2 l_{1} l_{11}-l_{11}^{2}-l_{1}^{2} +2 a\left(L+L_{11}-l_{1}-l_{11}\right)+d_{ j }^{2}\right]\right\}
17.5a A and B \frac{P c}{I_{2}}\left(\frac{-L C_{1}}{6 A}+\frac{d_{ j }^{2}}{2}\right)
17.5b A and B \frac{P p}{Z_{11}}\left(\frac{-L C_{2}}{6 A_{3}}+\frac{d_{ j }^{2}}{2}\right)
Source: Courtesy of American Society of Mechanical Engineers, from Table 13-18.1 of ASME Code VIII-1.

 

Related Answered Questions

Question: 17.5

Verified Answer:

p = 4in. T_{0} = 0.125in.         ...