Question 11.3: The rocket in Example 11.2 has a diameter of 5 m. It is to b...

The rocket in Example 11.2 has a diameter of 5 m. It is to be launched on a gravity turn trajectory. Pitchover begins at an altitude of 130 m with an initial flight path angle \gamma o of 89.85°. What are the altitude h and speed v of the rocket at burnout \left(t_{b o}=260 s \right)? What are the velocity losses due to drag and gravity (cf. Equations 11.27)?

\Delta v_{D}=\int\limits_{t_{o}}^{t_{f}} \frac{D}{m} d t \quad \Delta v_{G}=\int\limits_{t_{o}}^{t_{f}} g \sin \gamma d t                  (11.27)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The \text { MATLAB }^{\circledR} program Example_11_03.m in Appendix D.40 finds the speed v, the flight path angle γ , the altitude h and the downrange distance x as a function of time. It does so by using the ordinary differential equation solver rkf_45.m (Appendix D.4) to numerically integrate Equations 11.6 through 11.8, namely

\frac{d v}{d t}=\frac{T}{m}-\frac{D}{m}-g \sin \gamma               (a)

\frac{d \gamma}{d t}=-\frac{1}{v}\left\lgroup g-\frac{v^{2}}{R_{E}+h} \right\rgroup \cos \gamma                (b)

\frac{d h}{d t}=v \sin \gamma                                  (c)

\frac{d x}{d t}=\frac{R_{E}}{R_{E}+h} v \cos \gamma                      (d)

The variable mass m is given in terms of the initial mass m_{o}=68,000 kg and the constant mass flow rate \dot{m}_{e} by Equation 11.11,

m=m_{o}-\dot{m}_{e} t                          (e)

The thrust T = 933.913 kN is assumed constant, and \dot{m}_{e} is obtained from T and the specific impulse I_{s p}=390 by means of Equation 11.20,

\dot{m}_{e}=\frac{T}{I_{s p} g_{o}}               (f)

The drag force D in (a) is given by Equation 11.1,

D=q A C_{D}                  (11.1)

D=\frac{1}{2} \rho v^{2} A C_{D}                (g)

The drag coefficient is assumed to have the constant value C_{D}=0.5. The frontal area A = πd²/4 is found from the rocket diameter d = 5 m. The atmospheric density profile is assumed exponential,

\rho=\rho_{o} e^{-h / h_{o}}                (h)

where \rho_{o}=1.225 kg / m ^{3} is the sea level atmospheric density and h_{o}=7.5 km is the scale height of the atmosphere. (The scale height is the altitude at which the density of the atmosphere is about 37% of its sea level value.)
Finally, the acceleration of gravity varies with altitude h according to Equation 1.36,

g=g_{0} \frac{R_{E}^{2}}{\left(R_{E}+z\right)^{2}}=\frac{g_{0}}{\left(1+ z / R_{E}\right)^{2}}                    (1.36)

g=\frac{g_{o}}{\left(1+h / R_{E}\right)^{2}} \quad\left(R_{E}=6378 km , g_{o}=9.91 m / s ^{2}\right)                  (i)

The drag loss and gravity loss are found by numerically integrating Equations 11.27.

Between lift off and pitchover, the flight path angle γ is held at 90°. Pitchover begins at the altitude h_{p}=130 m with the flight path angle set at \gamma_{o}=89.85^{\circ}.
For the input data described above, the output of Example_11_03.m is as follows. The solution is very sensitive to the values of h_{p} \text { and } \gamma_{o}.

Initial flight path angle     =                     89.85 deg
Pitchover altitude               =                       130 m
Burn time                             =                        260 s
Final speed                           =                      8.62116 km/s
Final flight path angle        =                      8.80161 deg
Altitude                                 =                      133.211 km
Downrange distance          =                        462.318 km
Drag loss                               =                      0.298199 km/s
Gravity loss                           =                      1.44096 km/s

Thus, at burnout
Altitude = 133.2 km
Speed = 8.621 km/s
The speed losses are
Due to drag: 0.2982 km/s
Due to gravity:  1.441 km/s
Figure 11.3 shows the gravity-turn trajectory.

 

11.3

Related Answered Questions

Question: 11.5

Verified Answer:

Equation 11.56 gives the burnout velocity for thre...