Question 9.12: The strains determined by the use of the rosette as shown in...
The strains determined by the use of the rosette as shown in the Figure 9.40 on some steel structure are:
∈_1=+600 \mu, \quad ∈_2=+450 \mu, \quad ∈_3=-75 \mu
Determine: (a) the in-plane principal strains and (b) the in-plane maximum shearing strain.

Learn more on how we answer questions.
For plane-strain condition \left(\in_{x x}, \in_{y y}, \gamma_{x y}\right) , strain at any arbitrary direction defined by the angle θ with the x-axis is
∈_{\theta \theta}=\frac{1}{2}\left(∈_{x x}+∈_{y y}\right)+\frac{1}{2}\left(∈_{x x}-∈_{y y}\right) \cos 2 \theta+\frac{\gamma_{x y}}{2} \sin 2 \theta (9.109) [refer Eq.(9.109)]
Now putting θ= 30°, –30° and 90°, respectively, in the above equation, we get
\begin{aligned} & ∈_1=\frac{1}{2}\left(∈_{x x}+∈_{y y}\right)+\frac{1}{2}\left(∈_{x x}-∈_{y y}\right) \cos 60^{\circ}+\frac{\gamma_{x y}}{2} \sin 60^{\circ} \\ & ∈_2=\frac{1}{2}\left(∈_{x x}+∈_{y y}\right)+\frac{1}{2}\left(∈_{x x}-∈_{y y}\right) \cos 60^{\circ}+\frac{\gamma_{x y}}{2} \sin 60^{\circ} \\ & ∈_3=∈_{y y} \end{aligned} (1)
Subtracting the first two relations:
\gamma_{x y} \sin 60^{\circ}=\left(∈_1+∈_2\right) \Rightarrow \gamma_{x y}=\frac{2}{\sqrt{3}}\left(∈_1+∈_2\right) (2)
Putting ∈_{y y}=∈_3 \text { and } \gamma_{x y}=(2 / \sqrt{3})\left(∈_1+∈_2\right) into the first relation of Eq. (1) we obtain:
\frac{1}{2}\left(∈_{x x}+∈_3\right)+\frac{1}{2}\left(∈_{x x}+∈_3\right) \cos 60^{\circ}+\frac{1}{2}\left(∈_1+∈_2\right)=∈_1
or
\begin{gathered} ∈_{x x} \cos ^2 30^{\circ}+∈_3 \sin ^2 30^{\circ}=\frac{1}{2}\left(∈_1+∈_2\right) \\ \frac{3}{4} ∈_{x x}=\frac{1}{2}\left(∈_1+∈_2\right)-\frac{∈_3}{4} \\ =\frac{1}{4}\left[2\left(∈_1+∈_2\right)-∈_3\right] \end{gathered}
Therefore,
∈_{x x}=\frac{1}{3}\left[2\left(∈_1+∈_2\right)-∈_3\right] (3)
Thus, assimilating the relations in Eqs. (1)–(3) we get
∈_{x x}=\frac{1}{3}\left[2\left(∈_1+∈_2\right)-∈_3\right], \quad ∈_{y y}=∈_3, \quad \gamma_{x y}=\frac{2}{\sqrt{3}}\left(∈_1+∈_2\right)
Now putting the numerical values of ∈_1, ∈_2 \text { and } ∈_3 into the above equation, we get
\begin{aligned} & ∈_{x x}=\frac{1}{3}[2(600+450)-(-75)] \mu=725 \mu \\ & ∈_{y y}=-75 \mu \text { and } \quad \gamma_{x y}=173.21 \mu \end{aligned}
Thus, the in-plane principal strains are
\begin{aligned} ∈_1 & =\frac{1}{2}\left(∈_{x x}-∈_{y y}\right)+\frac{1}{2} \sqrt{\left(∈_{x x}+∈_{y y}\right)^2+\gamma_{x y}^2} \\ & =\frac{1}{2}(725-75)+\frac{1}{2} \sqrt{(725+75)^2+(100 \sqrt{3})^2} \\ & =734.27 \mu \end{aligned}
and ∈_2=\frac{1}{2}\left(∈_{x x}+∈_{y y}\right)-\frac{1}{2} \sqrt{\left(∈_{x x}+∈_{y y}\right)^2+\gamma_{x y}^2}=-84.27 \mu
(a) The in-plane principal strains are
∈_1=734.27 \mu \text { and } ∈_2=-84.27 \mu
(b) The in-plane maximum shearing strain are
\frac{\left(\gamma_{x y}\right)_{\max }}{2}=\frac{1}{2}\left(∈_1+∈_2\right) \Rightarrow\left(\gamma_{x y}\right)_{\max }=818.54 \mu