Question 11.8: The stress in the column found in Example Problem 11–7 seems...
The stress in the column found in Example Problem 11–7 seems high for the SAE 1040 hot-rolled steel. Redesign the circular column, using the same material, to achieve a design factor of at least 3. Use only the preferred sizes listed in Appendix A–2.
A–2 Preferred basic sizes. | ||||||||
Fractional (in.) | Decimal (in.) | SI metric (mm) | ||||||
\frac{1}{64} | 0.015 625 | 5 | 5.000 | 0.010 | 2.00 | 8.50 | 1.0 | 40 |
\frac{1}{32} | 0.031 25 | 5 \frac{1}{4} | 5.250 | 0.012 | 2.20 | 9.00 | 1.1 | 45 |
\frac{1}{16} | 0.0625 | 5 \frac{1}{2} | 5.500 | 0.016 | 2.40 | 9.50 | 1.2 | 50 |
\frac{3}{32} | 0.093 75 | 5 \frac{3}{4} | 5.750 | 0.020 | 2.60 | 10.00 | 1.4 | 55 |
\frac{1}{8} | 0.1250 | 6 | 6.000 | 0.025 | 2.80 | 10.50 | 1.6 | 60 |
\frac{5}{32} | 0.156 25 | 6 \frac{1}{2} | 6.500 | 0.032 | 3.00 | 11.00 | 1.8 | 70 |
\frac{3}{16} | 0.1875 | 7 | 7.000 | 0.040 | 3.20 | 11.50 | 2.0 | 80 |
\frac{1}{4} | 0.2500 | 7 \frac{1}{2} | 7.500 | 0.05 | 3.40 | 12.00 | 2.2 | 90 |
\frac{5}{16} | 0.3125 | 8 | 8.000 | 0.06 | 3.60 | 12.50 | 2.5 | 100 |
\frac{3}{8} | 0.3750 | 8 \frac{1}{2} | 8.500 | 0.08 | 3.80 | 13.00 | 2.8 | 110 |
\frac{7}{16} | 0.4375 | 9 | 9.000 | 0.10 | 4.00 | 13.50 | 3.0 | 120 |
\frac{1}{2} | 0.5000 | 9 \frac{1}{2} | 9.500 | 0.12 | 4.20 | 14.00 | 3.5 | 140 |
\frac{9}{16} | 0.5625 | 10 | 10.000 | 0.16 | 4.40 | 14.50 | 4.0 | 160 |
\frac{5}{8} | 0.6250 | 10 \frac{1}{2} | 10.500 | 0.20 | 4.60 | 15,00 | 4.5 | 180 |
\frac{11}{16} | 0.6875 | 11 | 11.000 | 0.24 | 4.80 | 15.50 | 5.0 | 200 |
\frac{3}{4} | 0.7500 | 11 \frac{1}{2} | 11.500 | 0.30 | 5.00 | 16.00 | 5.5 | 220 |
\frac{7}{8} | 0.8750 | 12 | 12.000 | 0.40 | 5.20 | 16.50 | 6 | 250 |
1 | 1.000 | 12 \frac{1}{2} | 12.500 | 0.50 | 5.40 | 17.00 | 7 | 280 |
1 \frac{1}{4} | 1.250 | 13 | 13.000 | 0.60 | 5.60 | 17.50 | 8 | 300 |
1 \frac{1}{2} | 1.500 | 13 \frac{1}{2} | 13.500 | 0.80 | 5.80 | 18.00 | 9 | 350 |
1 \frac{3}{4} | 1.750 | 14 | 14.000 | 1.00 | 6.00 | 18.50 | 10 | 400 |
2 | 2.000 | 14 \frac{1}{2} | 14.500 | 1.20 | 6.50 | 19.00 | 11 | 450 |
2 \frac{1}{4} | 2.250 | 1 | 15.000 | 1.40 | 7.00 | 19.50 | 12 | 500 |
2 \frac{1}{2} | 2.500 | 15 \frac{1}{2} | 15.500 | 1.60 | 7.50 | 20.00 | 14 | 550 |
2 \frac{3}{4} | 2.750 | 16 | 16.000 | 1.80 | 8.00 | 16 | 600 | |
3 | 3.000 | 16 \frac{1}{2} | 16.500 | 18 | 700 | |||
3 \frac{1}{4} | 3.250 | 17 | 17.000 | 20 | 800 | |||
3 \frac{1}{2} | 3.500 | 17 \frac{1}{2} | 17.500 | 22 | 900 | |||
3 \frac{3}{4} | 3.750 | 18 | 18.000 | 25 | 1000 | |||
4 | 4.000 | 18 \frac{1}{2} | 18.500 | 28 | ||||
4 \frac{1}{4} | 4.250 | 19 | 19.000 | 30 | ||||
4 \frac{1}{2} | 4.500 | 19 \frac{1}{2} | 19.500 | 35 | ||||
4 \frac{3}{4} | 4.750 | 20 | 20.000 |
Learn more on how we answer questions.
Objective Redesign the eccentrically loaded circular column of Example Problem 11–7 to reduce the stress and achieve a design factor of at least 3.
Given Data from Example Problems 11–6 and 11–7.
Analysis Use a larger diameter. Use Equation (11–23) to compute the required strength. Then compare that with the strength of SAE 1040 hot-rolled steel. Iterate until the stress is satisfactory.
Results Appendix A–3 gives the value for the yield strength of SAE 1040 HR to be 414 MPa.
A–3 Screw threads. | |||||
(a) American Standard thread dimensions, numbered sizes | |||||
Coarse threads: UNC | Fine threads: UNF | ||||
Size | Basic major diameter, D (in.) | Threads per inch, n | Tensile stress area (in.2) | Threads per inch, n | Tensile stress area (in.2) |
0 | 0.0600 | – | – | 80 | 0.001 80 |
1 | 0.0730 | 64 | 0.002 63 | 72 | 0.002 78 |
2 | 0.0860 | 56 | 0.003 70 | 64 | 0.003 94 |
3 | 0.0990 | 48 | 0.004 87 | 56 | 0.005 23 |
4 | 0.1120 | 40 | 0.006 04 | 48 | 0.006 61 |
5 | 0.1250 | 40 | 0.007 96 | 44 | 0.008 30 |
6 | 0.1380 | 32 | 0.009 09 | 40 | 0.010 15 |
8 | 0.1640 | 32 | 0.0140 | 36 | 0.014 74 |
10 | 0.1900 | 24 | 0.0175 | 32 | 0.0200 |
12 | 0.2160 | 24 | 0.0242 | 28 | 0.0258 |
Since we want to retain the same material, the cross-sectional dimensions of the column must be increased to decrease the stress. Equation (11–23) can be used to evaluate a design alternative.
The objective is to find suitable values for A, c, and r for the cross section such that P_{a} = 4780 N, N = 3, L_{e} = 0.8 m, and e = 19 mm, and the value of the entire right side of the equation is less than 414 MPa. The original design had a circular cross section with a diameter of 18 mm. Let’s try increasing the diameter to D = 25 mm. Then
A = πD² /4 = π ( 25 mm)² /4 = 491 mm²
r = D/4 = (25 mm)/4 = 6.3 mm
r² = (6.3 mm)² = 39.0 mm²
c = D/2 = (25 mm)/2 = 12.5 mm
Now let us call the right side of Equation (11–23) s'_{y} . Then
s'_{y} = \frac{3(4780)}{491} \left[1+ \frac{(0.75)(0.0125)}{(39)}sec\left\lgroup\frac{8}{2(0.0063)} \sqrt{\frac{(3)(4780)}{(491)(207 \times10^{9})}}\right\rgroup \right]
s'_{y} = 258.7 MPa = required valuee of s_{y}
This is well below the value of s_{y} = 414 MPa for the given steel, and it gives the desired design factor of 3.0 or greater.
Now we can evaluate the expected maximum deflection with the new design using Equation (11–24):
y_{max} = 0.75\left[sec\left\lgroup\frac{0.8}{2(0.0063)} \sqrt{\frac{4780}{(491(207 \times10^{9}))}}\right\rgroup -1 \right]
y_{max} = 1.87 mm
Comments The diameter of 25.0 mm is satisfactory. The maximum deflection for the column is 1.9 mm.