Question 11.8: The stress in the column found in Example Problem 11–7 seems...

The stress in the column found in Example Problem 11–7 seems high for the SAE 1040 hot-rolled steel. Redesign the circular column, using the same material, to achieve a design factor of at least 3. Use only the preferred sizes listed in Appendix A–2.

A–2     Preferred basic sizes.
Fractional (in.) Decimal (in.) SI metric (mm)
\frac{1}{64} 0.015 625 5 5.000 0.010 2.00 8.50 1.0 40
\frac{1}{32} 0.031 25 5 \frac{1}{4} 5.250 0.012 2.20 9.00 1.1 45
\frac{1}{16} 0.0625 \frac{1}{2} 5.500 0.016 2.40 9.50 1.2 50
\frac{3}{32} 0.093 75 5  \frac{3}{4} 5.750 0.020 2.60 10.00 1.4 55
\frac{1}{8} 0.1250 6 6.000 0.025 2.80 10.50 1.6 60
\frac{5}{32} 0.156 25 6 \frac{1}{2} 6.500 0.032 3.00 11.00 1.8 70
\frac{3}{16} 0.1875 7 7.000 0.040 3.20 11.50 2.0 80
\frac{1}{4} 0.2500 7 \frac{1}{2} 7.500 0.05 3.40 12.00 2.2 90
\frac{5}{16} 0.3125 8 8.000 0.06 3.60 12.50 2.5 100
\frac{3}{8} 0.3750 8 \frac{1}{2} 8.500 0.08 3.80 13.00 2.8 110
\frac{7}{16} 0.4375 9 9.000 0.10 4.00 13.50 3.0 120
\frac{1}{2} 0.5000  9 \frac{1}{2} 9.500 0.12 4.20 14.00 3.5 140
\frac{9}{16} 0.5625 10 10.000 0.16 4.40 14.50 4.0 160
\frac{5}{8} 0.6250  10 \frac{1}{2} 10.500 0.20 4.60 15,00 4.5 180
\frac{11}{16} 0.6875 11 11.000 0.24 4.80 15.50 5.0 200
\frac{3}{4} 0.7500  11  \frac{1}{2} 11.500 0.30 5.00 16.00 5.5 220
\frac{7}{8} 0.8750 12 12.000 0.40 5.20 16.50 6 250
1 1.000  12  \frac{1}{2} 12.500 0.50 5.40 17.00 7 280
1 \frac{1}{4} 1.250 13 13.000 0.60 5.60 17.50 8 300
1 \frac{1}{2} 1.500  13  \frac{1}{2} 13.500 0.80 5.80 18.00 9 350
1 \frac{3}{4} 1.750 14 14.000 1.00 6.00 18.50 10 400
2 2.000 14 \frac{1}{2} 14.500 1.20 6.50 19.00 11 450
2 \frac{1}{4} 2.250 1 15.000 1.40 7.00 19.50 12 500
\frac{1}{2} 2.500  15 \frac{1}{2} 15.500 1.60 7.50 20.00 14 550
\frac{3}{4} 2.750 16 16.000 1.80 8.00 16 600
3 3.000  16 \frac{1}{2} 16.500 18 700
\frac{1}{4} 3.250 17 17.000 20 800
\frac{1}{2} 3.500  17  \frac{1}{2} 17.500 22 900
\frac{3}{4} 3.750 18 18.000 25 1000
4 4.000 18 \frac{1}{2} 18.500 28
4 \frac{1}{4} 4.250 19 19.000 30
4 \frac{1}{2} 4.500 19  \frac{1}{2} 19.500 35
\frac{3}{4} 4.750 20 20.000

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective Redesign the eccentrically loaded circular column of Example Problem 11–7 to reduce the stress and achieve a design factor of at least 3.

Given Data from Example Problems 11–6 and 11–7.

Analysis    Use a larger diameter. Use Equation (11–23) to compute the required strength. Then compare that with the strength of SAE 1040 hot-rolled steel. Iterate until the stress is satisfactory.

Results     Appendix A–3 gives the value for the yield strength of SAE 1040 HR to be 414 MPa.

A–3  Screw threads.
(a) American Standard thread dimensions, numbered sizes
Coarse threads: UNC Fine threads: UNF
Size Basic major diameter, D (in.) Threads per inch, n Tensile stress area (in.2) Threads per inch, n Tensile stress area (in.2)
0 0.0600 80 0.001 80
1 0.0730 64 0.002 63 72 0.002 78
2 0.0860 56 0.003 70 64 0.003 94
3 0.0990 48 0.004 87 56 0.005 23
4 0.1120 40 0.006 04 48 0.006 61
5 0.1250 40 0.007 96 44 0.008 30
6 0.1380 32 0.009 09 40 0.010 15
8 0.1640 32 0.0140 36 0.014 74
10 0.1900 24 0.0175 32 0.0200
12 0.2160 24 0.0242 28 0.0258

Since we want to retain the same material, the cross-sectional dimensions of the column must be increased to decrease the stress. Equation (11–23) can be used to evaluate a design alternative.

The objective is to find suitable values for A, c, and r for the cross section such that P_{a} = 4780 N, N = 3, L_{e} = 0.8 m, and e = 19 mm, and the value of the entire right side of the equation is less than 414 MPa. The original design had a circular cross section with a diameter of 18 mm. Let’s try increasing the diameter to D = 25 mm. Then

A = πD² /4 = π ( 25 mm)² /4 = 491 mm²

r = D/4 = (25 mm)/4 = 6.3 mm

r² = (6.3 mm)² = 39.0 mm²

c = D/2 = (25 mm)/2 = 12.5 mm

Now let us call the right side of Equation (11–23) s'_{y} . Then

s'_{y} = \frac{3(4780)}{491} \left[1+ \frac{(0.75)(0.0125)}{(39)}sec\left\lgroup\frac{8}{2(0.0063)} \sqrt{\frac{(3)(4780)}{(491)(207 \times10^{9})}}\right\rgroup \right]

s'_{y} = 258.7 MPa = required valuee of s_{y}

This is well below the value of s_{y} = 414 MPa for the given steel, and it gives the desired design factor of 3.0 or greater.

Now we can evaluate the expected maximum deflection with the new design using Equation (11–24):

y_{max} = 0.75\left[sec\left\lgroup\frac{0.8}{2(0.0063)} \sqrt{\frac{4780}{(491(207 \times10^{9}))}}\right\rgroup -1 \right]

y_{max} = 1.87 mm

Comments   The diameter of 25.0 mm is satisfactory. The maximum deflection for the column is 1.9 mm.

Related Answered Questions