Question 13.5: The surface of a neutron star (sphere) vibrates slowly, so t...

The surface of a neutron star (sphere) vibrates slowly, so that the principal moments of inertia are harmonic functions of time:

I_{zz} = \frac{2}{5} mr^{2}(1+ ε  cos  ωt),

 

I_{xx} = I_{yy} = \frac{2}{5}mr^{2} \left(1 −ε \frac{cos  ωt}{2}\right),             ε\ll1.

The star simultaneously rotates with the angular velocity Ω(t).

(a) Show that the z-component of Ω remains nearly constant!

(b) Show that Ω(t) nutates about the z-axis and determine the nutation frequency for Ω_{z} \ll ω.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) If the total angular momentum is given in an inertial system, then

\left(\frac{dL}{dt}\right)_{inertial}= 0.

The principal moments of inertia are, however, given in a body-fixed system that rotates itself with the angular velocity Ω with respect to the inertial system. Then

\left(\frac{dL}{dt}\right)_{inertial}=\left(\frac{dL}{dt}\right)_{k}+Ω×L = 0.

One therefore gets in the body-fixed system (Euler equations)

\frac{d}{dt}(I_{zz}Ω_{z}) = 0,                                  (13.8)

\frac{d}{dt} (I_{xx}Ω_{x} )+ \frac{3}{2} I_{0}Ω_{y}Ω_{z}ε cos ωt = 0,                                   (13.9)

 

\frac{d}{dt} (I_{yy}Ω_{y} )− \frac{3}{2} I_{0}Ω_{x}Ω_{z}ε  cos  ωt = 0,                                  (13.10)

where I_{0} = (2/5)mr^{2} is the moment of inertia of the sphere. (13.8) has the solution

Ω_{z} = \frac{Ω_{0z}}{1 +ε  cos  ωt},

where Ω_{0z} follows from the initial conditions; this means that Ω_{z} is only very weakly time dependent.

(b) We suppose that ω \ll Ω_{z} , i.e.,

\frac{dI_{xx}}{dt}≈ 0         and             \frac{ dI_{yy}}{dt}≈ 0.

From this, we find

I_{xx} \dot{Ω}_{x} + \frac{3}{2} I_{0}Ω_{z} ε  cos  ωtΩ_{y} = 0,                        I_{yy}\dot{Ω}_{y} − \frac{3}{2} I_{0}Ω_{z} ε  cos  ωt Ω_{x} = 0.                                  (13.11)

Differentiating again and inserting (13.8), (13.9), and (13.10) yield

I_{xx} \ddot{Ω}_{x} + \frac{1}{I_{yy}} \left(\frac{3}{2} I_{0} Ω_{z} ε  cos  ωt\right)^{2}  Ω_{x} = 0,

 

I_{yy} \ddot{Ω}_{y} + \frac{1}{I_{xx}} \left(\frac{3}{2} I_{0} Ω_{z} ε  cos  ωt\right)^{2}  Ω_{y} = 0,

 

If     I_{xx} = I_{yy} ≈ I_{0}, then

\ddot{Ω}_{x} +\left(\frac{3}{2} ε Ω_{z}  cos  ωt\right)^{2} Ω_{x} = 0,                                   \ddot{Ω}_{y} +\left(\frac{3}{2} ε Ω_{z}  cos  ωt\right)^{2} Ω_{y} = 0.
Since ω \ll Ω_{z} (we further assume that ω \ll εΩ_{z}), we find

ω_{n} = \frac{3}{2}ε Ω_{z}  cos  ωt (nutation frequency),

i.e., Ω_{x}   and  Ω_{y} perform a nutation motion with ω_{n}.

Related Answered Questions

Question: 13.4

Verified Answer:

The principal moments of inertia of the rectangle ...