Question 18.7: The triangular plane strain element shown in Figure E18.7a i...

The triangular plane strain element shown in Figure \mathrm{E} 18.7 \mathrm{a} is one of the elements used in the finite element model of a concrete gravity dam. The thickness of the element may be taken as 1. The mass density of concrete is 2.4 tonne / \mathrm{m}^{3}, the modulus of elasticity is 24 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}, and the Poisson’s ratio is 0.2. (a) determine the stiffness and mass matrices of the element, (b) find the nodal forces that are equivalent to the gravity loads, and the hydrostatic force perpendicular to the face \mathrm{BC} as shown in the figure.

e18.7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Part (a)

From the given geometry we have

\begin{array}{ll}a_{1}=x_{2} y_{3}-x_{3} y_{2}=12 \quad a_{2}=x_{3} y_{1}-x_{1} y_{3}=0 & a_{3}=x_{1} y_{2}-x_{2} y_{1}=0 \\b_{1}=y_{2}-y_{3}=-4 \quad b_{2}=y_{3}-y_{1}=4 & b_{3}=y_{1}-y_{2}=0 \\c_{1}=x_{3}-x_{2}=0 \quad c_{2}=x_{1}-x_{3}=-3 & c_{3}=x_{2}-x_{1}=3 \\G=a_{1}+a_{2}+a_{3}=12 &\end{array} \qquad (a)

Matrix \mathbf{B} is now obtained from Equation 18.72

\begin{aligned}\varepsilon &=\mathbf{L}(\mathbf{N}) \mathbf{q}^e=\mathbf{B q}^e \\&=\frac{1}{G}\left[\begin{array}{cccccc}b_1 & 0 & b_2 & 0 & b_3 & 0 \\0 & c_1 & 0 & c_2 & 0 & c_3 \\c_1 & b_1 & c_2 & b_2 & c_3 & b_3\end{array}\right]\left\{\begin{array}{l}u_1 \\v_1 \\u_2 \\v_2 \\u_3 \\v_3\end{array}\right\}\end{aligned}

(18.72)

\mathbf{B}=\frac{1}{12}\left[\begin{array}{rrrrrr}-4 & 0 & 4 & 0 & 0 & 0 \\0 & 0 & 0 & -3 & 0 & 3 \\0 & -4 & -3 & 4 & 3 & 0\end{array}\right] \qquad (b)

Substituting for \mathrm{B}, t=1, A=G / 2=6

, and matrix D for plane strain condition we get

\mathbf{K}=1.389 \times 10^{6}\left[\begin{array}{cccccc}12.8 & 0 & -12.8 & 2.4 & 0 & -2.4 \\0 & 4.8 & 3.6 & -4.8 & -3.6 & 0 \\-12.8 & 3.6 & 15.5 & -6.0 & -2.7 & 2.4 \\2.4 & -4.8 & -6.0 & 12.0 & 3.6 & -7.2 \\0 & -3.6 & -2.7 & 3.6 & 2.7 & 0 \\-2.4 & 0 & 2.4 & -7.2 & 0 & 7.2\end{array}\right] \mathrm{kN} / \mathrm{m} \qquad (c)

The interpolation functions are given by

\begin{aligned}&N_{1}=\frac{1}{G}\left(a_{1}+b_{1} x+c_{1} y\right)=\frac{1}{G}(12-4 x) \\&N_{2}=\frac{1}{G}\left(a_{2}+b_{2} x+c_{2} y\right)=\frac{1}{G}(4 x-3 y) \\&N_{3}=\frac{1}{G}\left(a_{3}+b_{3} x+c_{3} y\right)=\frac{1}{G}(3 y)\end{aligned} \qquad (d)

The mass matrix is obtained from

\begin{aligned}\mathbf{M} &=\rho t \int_{A}\left[\begin{array}{cccccc}N_{1}^{2} & 0 & N_{1} N_{2} & 0 & N_{1} N_{3} & 0 \\0 & N_{1}^{2} & 0 & N_{1} N_{2} & 0 & N_{1} N_{3} \\N_{1} N_{2} & 0 & N_{2}^{2} & 0 & N_{2} N_{3} & 0 \\0 & N_{1} N_{2} & 0 & N_{2}^{2} & 0 & N_{2} N_{3} \\N_{1} N_{3} & 0 & N_{2} N_{3} & 0 & N_{3}^{2} & 0 \\0 & N_{1} N_{3} & 0 & N_{2} N_{3} & 0 & N_{3}^{2}\end{array}\right] d A \\&=1.2\left[\begin{array}{llllll}2 & 0 & 1 & 0 & 1 & 0 \\0 & 2 & 0 & 1 & 0 & 1 \\1 & 0 & 2 & 0 & 1 & 0 \\0 & 1 & 0 & 2 & 0 & 1 \\1 & 0 & 1 & 0 & 2 & 0 \\0 & 1 & 0 & 1 & 0 & 2\end{array}\right] \text { tonne }\end{aligned} \qquad (e)

As an example, the integral \int_{A} N_{1}^{2} d A is obtained from

\begin{aligned}\int_{A} N_{1}^{2} d A &=\frac{1}{G^{2}} \int_{0}^{3} \int_{0}^{4 x / 3}(12-4 x)^{2} d y d x \\&=\frac{1}{G^{2}} \frac{64}{3} \int_{0}^{3}\left(9 x+x^{3}-6 x^{2}\right) d x=1\end{aligned} \qquad (f) \operatorname{Part}(\mathrm{b})

Loads equivalent to the gravity loads are obtained from

\begin{aligned}\mathrm{p}_{b} &=\int_{A} \mathbf{N}^{T}\left\{\begin{array}{c}0 \\-\rho g\end{array}\right\} t d A \\&=\int_{0}^{3} \int_{0}^{4 x / 3}\left[\begin{array}{cc}N_{1} & 0 \\0 & N_{1} \\N_{2} & 0 \\0 & N_{2} \\N_{3} & 0 \\0 & N_{3}\end{array}\right]\left\{\begin{array}{c}0 \\-\rho g\end{array}\right\} d x d y=-23.544\left\{\begin{array}{l}0 \\2 \\0 \\2 \\0 \\2\end{array}\right\} \mathrm{kN}\end{aligned} \qquad (g)

As an example, the integral \int_{A} N_{1} d A is obtained from

\begin{aligned}\int_{A} N_{1} d A &=\frac{1}{G} \int_{0}^{3} \int_{0}^{4 x / 3} a_{1}+b_{1} x+c_{1} y d x d y \\&=\frac{1}{G}\left(6 a_{1}+12 b_{1}+8 c_{1}\right)=2\end{aligned} \qquad (h)

It will be noted that the equivalent load vector is comprised of a load of \rho g t A / 3, or 1 / 3 of the total weight, at each node directed along the negative y axis, where A is the area of the triangle.

To obtain the nodal forces equivalent to the hydrostatic pressure on face BC, we define a local \xi axis with origin at \mathrm{B} and directed along BC. The interpolation functions that correspond to the \xi axis are

\mathrm{L}=\left[\begin{array}{ll}\left(1-\frac{\xi}{l}\right) & \frac{\xi}{l}\end{array}\right] \qquad (i)

where l=4 is the length of side BC. The nodal forces are now given by

\begin{aligned}\mathrm{p}_{S} &=-\int_{0}^{l}\left\{\begin{array}{r}1-\frac{\xi}{l} \\\frac{\xi}{l}\end{array}\right\}\left(90-\frac{40 \xi}{l}\right) t d \xi (j)\\&=-\left\{\begin{array}{l}153.3 \\126.7\end{array}\right\} \quad \mathrm{kN} \qquad (k)\end{aligned}

The nodal forces are shown in Figure E18.7b. They are directed along the negative x direction and are, in fact, statically equivalent to the distributed force.

Related Answered Questions