Question 10.SP.2: The uniform column AB consists of an 8-ft section of structu...
The uniform column A B consists of an 8 – \mathrm{ft} section of structural tubing having the cross section shown. (a) Using Euler’s formula and a factor of safety of two, determine the allowable centric load for the column and the corresponding normal stress. (b) Assuming that the allowable load, found in part a, is applied as shown at a point 0.75 \mathrm{in}. from the geometric axis of the column, determine the horizontal deflection of the top of the column and the maximum normal stress in the column. Use E=29 \times 10^{6} psi.


Learn more on how we answer questions.
Effective Length. Since the column has one end fixed and one end free, its effective length is
L_{e}=2(8 \mathrm{ft})=16 \mathrm{ft}=192 \mathrm{in}
Critical Load. Using Euler’s formula, we write
P_{\text {cr }}=\frac{\pi^{2} E I}{L_{e}^{2}}=\frac{\pi^{2}\left(29 \times 10^{6} \mathrm{psi}\right)\left(8.00 \mathrm{in}^{4}\right)}{(192 \mathrm{in} .)^{2}} \quad P_{\text {cr }}=62.1 \mathrm{kips}
a. Allowable Load and Stress. For a factor of safety of 2, we find
P_{\text {all }}=\frac{P_{\text {cr }}}{F . S .}=\frac{62.1 \mathrm{kips}}{2} \quad P_{\text {all }}=31.1 \text { kips }
and
\sigma=\frac{P_{\text {all }}}{A}=\frac{31.1 \mathrm{kips}}{3.54 \mathrm{in}^{2}} \quad \sigma=8.79 \mathrm{ksi}
b. Eccentric Load. We observe that column A B and its loading are identical to the upper half of the column of Fig. 10.19 which was used in the derivation of the secant formulas; we conclude that the formulas of Sec. 10.5 apply directly to the case considered here. Recalling that P_{\text {all }} / P_{\text {cr }}=\frac{1}{2} and using Eq. (10.31), we compute the horizontal deflection of point A:
\begin{aligned} y_{m} & =e\left[\sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{\mathrm{cr}}}}\right)-1\right]=(0.75 \mathrm{in} .)\left[\sec \left(\frac{\pi}{2 \sqrt{2}}\right)-1\right] \\ & =(0.75 \mathrm{in} .)(2.252-1) \quad y_{m}=0.939 \mathrm{in.} \end{aligned}
The maximum normal stress is obtained from Eq. (10.35):
\begin{aligned} \sigma_{m} & =\frac{P}{A}\left[1+\frac{e c}{r^{2}} \sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{\text {cr }}}}\right)\right] \\ & =\frac{31.1 \mathrm{kips}}{3.54 \mathrm{in}^{2}}\left[1+\frac{(0.75 \mathrm{in} .)(2 \mathrm{in} .)}{(1.50 \mathrm{in} .)^{2}} \sec \left(\frac{\pi}{2 \sqrt{2}}\right)\right] \\ & =(8.79 \mathrm{ksi})[1+0.667(2.252)] \quad \sigma_{m}=22.0 \mathrm{ksi} \end{aligned}


