Question 5.89: The uniform rod of length L and weight W is supported on the...

The uniform rod of length L and weight W is supported on the smooth planes. Determine its position θ for equilibrium. Neglect the thickness of the rod.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\hookrightarrow + \Sigma M_B=0 ; \quad-W\left(\frac{L}{2} \cos \theta\right)+N_A \cos \phi(L \cos \theta)+N_A \sin \phi(L \sin \theta)=0

N_A=\frac{W \cos \theta}{2 \cos (\phi-\theta)}          (1)

+→ \Sigma F_x=0 ; \quad N_B \sin \psi-N_A \sin \phi=0          (2)

+↑ \Sigma F_y=0 ; \quad N_B \cos \psi+N_A \cos \phi-W=0

N_B=\frac{W-N_A \cos \phi}{\cos \psi}            (3)

Substituting Eqs. (1) and (3) into Eq. (2):

\left(W-\frac{W \cos \theta \cos \phi}{2 \cos (\phi-\theta)}\right) \tan \psi-\frac{W \cos \theta \sin \phi}{2 \cos (\phi-\theta)}=0

2 \cos (\phi-\theta) \tan \psi-\cos \theta \tan \psi \cos \phi-\cos \theta \sin \phi=0

 

\sin \theta(2 \sin \phi \tan \psi)-\cos \theta(\sin \phi-\cos \phi \tan \psi)=0

 

\tan \theta=\frac{\sin \phi-\cos \phi \tan \psi}{2 \sin \phi \tan \psi}

 

\theta=\tan ^{-1}\left(\frac{1}{2} \cot \psi-\frac{1}{2} \cot \phi\right)
1

Related Answered Questions

Question: 5.92

Verified Answer:

Equations of Equilibrium: The normal reaction of [...
Question: 5.86

Verified Answer:

Equations of Equilibrium: The normal reaction [lat...