Question 8.9: The water tower shown in Figure E8.9a is idealized as a sing...

The water tower shown in Figure E8.9a is idealized as a single-degree-of-freedom system. It is subjected to the half-sine-wave loading shown in Figure E8.9b. Calculate the displacement history for the first 1.0 \mathrm{~s} using numerical evaluation of the Duhamel’s integral and h=0.1 \mathrm{~s}. Neglect damping and assume that the tower is initially at rest.

e8.9
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The mass m of the tower and the frequency \omega are obtained first:

\begin{aligned}m &=\frac{978.8}{386.4}=2.533  \mathrm{kip} \cdot \mathrm{s}^{2} / \mathrm{in} . \\\omega &=\sqrt{\frac{k}{m}}=\sqrt{\frac{100}{2.533}}=6.283  \mathrm{rad} / \mathrm{s}\end{aligned}

The displacement response is obtained in terms of Duhamel’s integral as

u(t)=A \sin \omega t-B \cos \omega t \qquad (a)

where A and B have been defined in Equation 8.68. The response calculations for the first 0.6 \mathrm{~s} are shown in Tables E8.9a and E8.9b, where results are given for three alternative methods rectangular summation, trapezoidal method, and the Simpson’s method: After 0.6 \mathrm{~s}, A and B remain unchanged and the response for subsequent intervals of time is given by Equation a, with A and B equal to their values at 0.6 \mathrm{~s}.

Because the forcing function is, in this case, a simple mathematical function, it is possible to obtain a closed-form solution. When the sine-wave function is expressed as

P(t)=p_{0} \sin \Omega t \qquad (b)

the response for the first 0.6 \mathrm{~s} is given by

u(t)=\frac{p_{0}}{k} \frac{1}{1-\beta^{2}}(\sin \Omega t-\beta \sin \omega t) \qquad (c)

where \beta=\Omega / \omega. We have

\begin{aligned}\Omega &=\frac{\pi}{0.6}=5.236  \mathrm{rad} / \mathrm{s} \\\beta &=\frac{\Omega}{\omega}=\frac{5.236}{6.283}=0.833 \\p_{0} &=100  \mathrm{kips}\end{aligned}

so that

u(t)=3.267(\sin 5.236 t-0.833 \sin 6.283 t) \qquad (d)

Table E8.9a Numerical evaluation of Duhamel’s equation, undamped system.
\begin{matrix} \hline \\ &&&& \bar{A} &&&&&\bar{B} \\\tau & P(\tau) & & p(\tau) \times & \text { Rectangular } & \text { Trapezoidal } & \text { Simpson's } && p(\tau) \times & \text { Rectangular } & \text { Trapezoidal } & \text { Simpson's } \\\text { (s) } & (\text { kips }) & \cos \omega \tau & \cos \omega \tau & \text { sum } & \text { method } & \text { method } & \sin\omega \tau & \sin\omega \tau & \text { sum } & \text { method } & \text { method }\\ \hline (1) &(2)&(3)&(4)&(5)&(6)&(7)&(8)&(9)&(10)&(11)&(12)\\\hline 0.0 & 0.0 & 1.000 & 0.00 & 0.00 & 0.0 & 0.0 & 0.000 & 0.00 & 0.0 & 0.0 &0.0 \\0.1 & 50.0 & 0.809 & 40.45 & 0.00 & 40.5 & & 0.588 & 29.39 & 0.0 & 29.4 \\0.2 & 86.6 & 0.309 & 26.76 & 40.45 & 107.7 & 188.6 & 0.951 & 82.36 & 29.4 & 141.1 & 199.9 \\0.3 & 100.0 & -0.309 & -30.90 & 67.21 & 103.5 & & 0.957 & 95.10 & 111.7 & 318.6 \\0.4 & 86.6 & -0.809 & -70.06 & 36.32 & 2.6 & 21.7 & 0.588 & 50.92 & 206.8 & 464.6 & 713.6\\0.5 & 50.0 & -1.000 & -50.00 & -33.74 & -117.5 & & 0.000 & 0.00 & 257.8 & 515.5 \\0.6 & 0.0 & -0.809 & 0.00 & -83.74 & -167.5 & -248.4 & -0.588 & 0.00 & 257.8 & 515.5 & 764.5\\ \hline\end{matrix}

\begin{aligned}\frac{\Delta \tau}{m \omega} &=\frac{0.1}{2.533 \times 6.283}=6.283 \times 10^{-3} \\\frac{\Delta \tau}{2 m \omega} &=3.142 \times 10^{-3} \\\frac{\Delta \tau}{3 m \omega} &=2.094 \times 10^{-3}\end{aligned}

Table E8.9b Numerical evaluation of Duhamel’s equation, undamped system.
\begin{matrix}\hline &&&\text{Rectangular }&\text{sum }&&\text{Trapezoidal }&\text{method }&&\text{Simpson’s }&\text{method }&\\ &&&&&A \sin ωt &&&A \sin ωt &&&A \sin ωt \\t & \sin \omega t & \cos \omega t & A=\bar{A} \frac{\Delta \tau}{m \omega} & B=\bar{B} \frac{\Delta \tau}{m \omega} & -B \cos \omega t & A=\bar{A} \frac{\Delta \tau}{2 m \omega} & B=\bar{B} \frac{\Delta \tau}{2 m \omega} & -B \cos \omega t & A=\bar{A} \frac{\Delta \tau}{3 m \omega} & B=\bar{B} \frac{\Delta \tau}{3 m \omega} & -B \cos \omega t \\\hline 0.1 & 0.588 & 0.809 & 0.0000 & 0.0000 & 0.0000 & 0.1271 & 0.0923 & 0.0000 & \\0.2 & 0.951 & 0.309 & 0.2542 & 0.1847 & 0.1847 & 0.3382 & 0.4434 & 0.1846 & 0.3949 & 0.4187 & 0.2458\\0.3 & 0.951 & -0.309 & 0.4223 & 0.7019 & 0.6182 & 0.3252 & 1.0010 & 0.6184 & \\0.4 & 0.588 & -0.809 & 0.2282 & 1.2994 & 1.1849 & 0.0080 & 1.4597 & 1.1856 & 0.0454 & 1.4946 & 1.2358 \\0.5 & 0.000 & -1.000 & -0.2434 & 1.6199 & 1.6199 & -0.3692 & 1.6197 & 1.6197 & \\0.6 & -0.588 & -0.809 & -0.5262 & 1.6199 & 1.6199 & -0.5262 & 1.6197 & 1.6197 & -0.5203 & 1.6013 & 1.6162 \\ \hline \end{matrix}

Table E8.9c Comparison of numerical solution with theoretical results.
\begin{array}{lcc}\hline & \text{Duhamel integral} & \text{Closed-form solution,}\\ t & A \sin \omega t-B \cos \omega t & \text{Equation d or e} \\\hline 0.1 & 0.0000 & 0.0333 \\0.2 & 0.1846 & 0.241 \mathrm{I} \\0.3 & 0.6184 & 0.6788 \\0.4 & 1.1856 & 1.2290 \\0.5 & 1.6197 & 1.6334 \\0.6 & 1.6197 & 1.6000 \\0.7 & 1.0000 & 0.9880 \\0.8 & 0.0000 & 0.0000 \\0.9 & -1.0000 & -0.9900 \\1.0 & -1.6197 & -1.6006 \\ \hline \end{array}

\begin{aligned}\text { At } t &=0.6 \mathrm{~s}, \\u(t) &=3.267(\sin 0.6 \times 5.236-0.833 \sin 0.6 \times 6.283) \\&=1.6 \text { in. } \\\dot{u}(t) &=3.267(5.236 \cos 0.6 \times 5.236-0.833 \times 6.283 \cos 6.283 \times 0.6) \\&=-3.272 \text { in. } / \mathrm{s}\end{aligned}

The exact response subsequent to 0.6 \mathrm{~s} is given by

u(t)=1.6 \cos \omega(t-0.6)-\frac{3.272}{6.283} \sin (t-0.6) \qquad (e)

The theoretical response values for the first 1 \mathrm{~s} obtained from Equations \mathrm{d} and e are compared with the results of the numerical evaluation of Duhamel’s integral using the trapezoidal method (Table E8.9c).

Related Answered Questions

Question: 8.P.13

Verified Answer:

\begin{array}{ccccc} \hline \text { Time } ...
Question: 8.P.1

Verified Answer:

\omega=\sqrt{\frac{4 k}{M+\frac{3 m}{2}}}[/...
Question: 8.14

Verified Answer:

On substituting for m, c, k, and [l...