Question 10.2: The well known scientist Theodore von Karman suggested the m...

The well known scientist Theodore von Karman suggested the mixing length to be l=\chi\left|\frac{ d \bar{u} / d y}{ d ^{2} \bar{u} / d y^{2}}\right|. Using this relation drive the velocity profile near the wall of a flat-plate boundary layer flow.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We know

 

\tau_{t}=\mu_{t} \frac{\partial \bar{u}}{\partial y}, \text { where } \mu_{t}=\rho l^{2}\left|\frac{\partial \bar{u}}{\partial y}\right|

 

So, \tau_{t}=\rho l^{2}\left|\frac{\partial \bar{u}}{\partial y}\right|^{2}

 

Substituting von Karman’s suggestion, we get

 

\tau_{t}=\frac{\rho \chi^{2}( d \bar{u} / d y)^{2}( d \bar{u} / d y)^{2}}{\left( d ^{2} \bar{u} / d y^{2}\right)^{2}}=\frac{\rho \chi^{2}( d \bar{u} / d y)^{4}}{\left( d ^{2} \bar{u} / d y^{2}\right)^{2}}

 

or \left(\frac{ d \bar{u}}{ d y}\right)^{4}=\frac{\tau_{t}}{\rho} \frac{1}{\chi^{2}}\left(\frac{ d ^{2} \bar{u}}{ d y^{2}}\right)^{2}

 

Assuming \tau_{t}=\tau_{w} \text { and considering } u_{\tau}=\sqrt{\tau_{w} / \rho}

 

\left(\frac{ d \bar{u}}{ d y}\right)^{4}=\frac{u_{\tau}^{2}}{\chi^{2}}\left(\frac{ d ^{2} \bar{u}}{ d y^{2}}\right)^{2}

 

Taking the square root, and applying physical argument that (d \bar{u} / d y) cannot be imaginary, we obtain

 

\left(\frac{ d \bar{u}}{ d y}\right)^{2}=\pm \frac{u_{\tau}}{\chi}\left(\frac{ d ^{2} \bar{u}}{ d ^{2}}\right)

 

Let m= d \bar{u} / d y

 

then d m / d y=\pm \frac{\chi}{u_{\tau}} m^{2}

 

Integration yields,

 

-\frac{1}{m}=\pm \frac{\chi}{u_{\tau}} y+C_{1}

 

\text{Using}m\Rightarrow\infty\text{as}y\Rightarrow0\text{,weget}C_{1}=0

 

Then, \frac{ d \bar{u}}{ d y}=\frac{u_{\tau}}{\chi y}, \quad \text { since } \frac{ d \bar{u}}{ d y} \geq 0

 

Integrating, we obtain,

 

\bar{u}=\frac{u_{\tau}}{\chi} \ln y+C_{2}

 

At some value y=y_{0}, \bar{u}=0

 

Invoking this, C_{2}=-\frac{u_{\tau}}{\chi} \ln y_{0}

 

Thus, \frac{\bar{u}}{u_{\tau}}=\frac{1}{\chi} \cdot \ln \left(y-y_{0}\right)

 

Let us substitute y_{0}=\beta \frac{v}{u_{t}} order of which is same as viscous sublayer and β is an arbitrary constant.

We shall get, thus,

 

\frac{\bar{u}}{u_{\tau}}=\frac{1}{\chi}\left(\ln \frac{u_{\tau} y}{v}-\ln \beta\right)

 

or \frac{\bar{u}}{u_{\tau}}=A_{1} \ln \eta+D_{1}

 

This is the universal velocity profile.

Related Answered Questions