Question 3.9: Thick cylinder with pistons A cylinder with 50 mm bore and 1...

Thick cylinder with pistons

A cylinder with 50 mm bore and 100 mm OD is subjected to an internal pressure of 400 bar. The end loads are supported by pistons which seal without restraint. Determine the distributions of stress across the cylinder wall.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

p = 400 bar = 400 × 100 kPa
= 40 × 1000 kPa
= 40 N/mm²

Since there is no axial load on the cylinder, then σ_{z} = 0.
For a thick cylinder,

\sigma _{r} = A  –  \frac{B}{r^{2}}

and

\sigma _{\theta } = A + \frac{B}{r^{2}}

At r = 25 mm, σ_{r} = –  40  N/mm²

                –  40 = A  –  \frac{B}{625}                             (3.54)

At r = 50 mm, σ_{r} = 0

0 = A  –  \frac{B}{2500}                                                     (3.55)

Eliminating A from equations (3.54) and (3.55) gives:

40 = B \left(\frac{1}{625}  –  \frac{1}{2500} \right)

 

= B\left(\frac{4  –  1}{2500} \right)

 

                           B = \frac{40  \times  2500}{3}

Substituting for B into equation (3.55) gives:

0 = A  –  40 \times \frac{2500}{3  \times  2500}

                  A = \frac{40}{3}

Hence,

\sigma _{\theta } = \frac{40}{3} + \frac{40  \times  2500}{3r^{2}} = \frac{40}{3} \left(1 + \frac{2500}{r^{2}} \right)

and

\sigma _{r } = \frac{40}{3} – \frac{40  \times  2500}{3r^{2}} = \frac{40}{3} \left(1  –  \frac{2500}{r^{2}} \right)

At r = 25 mm,

\sigma _{\theta } = \frac{40}{3} \times 5  N/mm^{2} = 66.7 N/mm^{2}

and

\sigma _{r } = \frac{40}{3} \times (-3)  N/mm^{2} = –  40  N/mm^{2}

At r = 50 mm,

\sigma _{\theta } = \frac{40}{3} \times 2 N/mm^{2} = 26.7  N/mm^{2}

and

\sigma _{r } = 0
3.97
3.98

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...