Question 8.S-P.5: Three forces are applied as shown at points A, B, and D of a...

Three forces are applied as shown at points A, B, and D of a short steel post. Knowing that the horizontal cross section of the post is a 40 × 140-mm rectangle, determine the principal stresses, principal planes and maximum shearing stress at point H.

8.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Internal Forces in Section EFG.     We replace the three applied forces by an equivalent force-couple system at the center C of the rectangular section EFG. We have

V_{x}=-30 kN              P = 50 kN              V_{z}=-75 kN

 

M_{x}=(50 kN )(0.130 m )-(75 kN )(0.200 m )=-8.5 kN \cdot m

 

M_{y}=0                    M_{z}=(30 kN )(0.100 m )=3 kN \cdot m

We note that there is no twisting couple about the y axis. The geometric
properties of the rectangular section are

A=(0.040 m )(0.140 m )=5.6 \times 10^{-3} m ^{2}

 

I_{x}=\frac{1}{12}(0.040 m )(0.140 m )^{3}=9.15 \times 10^{-6} m ^{4}

 

I_{z}=\frac{1}{12}(0.140 m )(0.040 m )^{3}=0.747 \times 10^{-6} m ^{4}

 

Normal Stress at H.     We note that normal stresses s_{y} are produced by the centric force P and by the bending couples M_{x} and M_{z}. We determine the sign of each stress by carefully examining the sketch of the force-couple system at C.

s _{y}=+\frac{P}{A}+\frac{\left|M_{z}\right| a}{I_{z}}-\frac{\left|M_{x}\right| b}{I_{x}}

 

=\frac{50 kN }{5.6 \times 10^{-3} m ^{2}}+\frac{(3 kN \cdot m )(0.020 m )}{0.747 \times 10^{-6} m ^{4}}-\frac{(8.5 kN \cdot m )(0.025 m )}{9.15 \times 10^{-6} m ^{4}}

 

s _{y}=8.93 MPa +80.3 MPa -23.2 MPa                          s _{y}=66.0 MPa

Shearing Stress at H.     Considering first the shearing force V_{x}, we note that Q = 0 with respect to the z axis, since H is on the edge of the cross section. Thus V_{x} produces no shearing stress at H. The shearing force V_{z} does produce a shearing stress at H and we write

Q=A_{1} \bar{y}_{1}=[(0.040 m )(0.045 m )](0.0475 m )=85.5 \times 10^{-6} m ^{3}

 

t _{y z}=\frac{V_{z} Q}{I_{x} t}=\frac{(75 kN )\left(85.5 \times 10^{-6} m ^{3}\right)}{\left(9.15 \times 10^{-6} m ^{4}\right)(0.040 m )}                                    t _{y z}=17.52 MPa

Principal Stresses, Principal Planes, and Maximum Shearing Stress at H.     We draw Mohr’s circle for the stresses at point H

\tan 2 u _{p}=\frac{17.52}{33.0}                  2 u_{p}=27.96^{\circ}                      u _{p}=13.98^{\circ}

 

R=\sqrt{(33.0)^{2}+(17.52)^{2}}=37.4 MPa                        t _{\max }=37.4 MPa

 

s _{\max }=O A=O C+R=33.0+37.4                          s_{\max }=70.4 MPa

 

s _{\min }=O B=O C-R=33.0-37.4                            s_{\min }=-7.4 MPa

8.55
8.56

Related Answered Questions