Question 3.2.3: To solve the system x1 + 2x2 + x3 = 4 3x1 + 8 x2 + 7 x3 = 20...
To solve the system
x_{1} + 2 x_{2} + x_{3} = 4
3 x_{1} + 8 x_{2} + 7 x_{3} = 20
2 x_{1} + 7 x_{2} + 9 x_{3} = 23 (11)
Learn more on how we answer questions.
whose augmented coefficient matrix is exhibited in (3), we carry out the following sequence of elementary row operations, corresponding to the steps in the solution of Example 6 in Section 3.1:
\left [ \begin{matrix} 1 & 2 & 1 & 4 \\ 3 & 8 & 7 & 20 \\ 2 & 7 & 9 & 23 \end{matrix} \right ] (12)
\underrightarrow{(- 3) R_{1} + R_{2}} \left [ \begin{matrix} 1 & 2 & 1 & 4 \\ 0 & 2 & 4 & 8 \\ 2 & 7 & 9 & 23 \end{matrix} \right ]
\underrightarrow{(- 2) R_{1} + R_{3}} \left [ \begin{matrix} 1 & 2 & 1 & 4 \\ 0 & 2 & 4 & 8 \\ 0 & 3 & 7 & 15 \end{matrix} \right ]
\underrightarrow{(\frac{1}{2}) R_{2}} \left [ \begin{matrix} 1 & 2 & 1 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 3 & 7 & 15 \end{matrix} \right ]
\underrightarrow{(- 3) R_{2} + R_{3}} \left [ \begin{matrix} 1 & 2 & 1 & 4 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{matrix} \right ] (13)
The final matrix here is the augmented coefficient matrix of the system
x_{1} + 2 x_{2} + x_{3} = 4
x_{2} + 2 x_{3} = 4
x_{3} = 3. (14)
whose unique solution (readily found by back substitution) is x_{1} = 5, x_{2} = – 2, x_{3} = 3.