Question 2.7.7: Two Complex Roots Use two methods to obtain the inverse Lapl...

Two Complex Roots

Use two methods to obtain the inverse Laplace transform of

X(s)=\frac{3s+7}{4s^2+24s+136}= \frac{3s+7}{4(s^2+6s+34)}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. The denominator roots are s = −3 ± 5j. To avoid complex-valued coefficients, we note that the denominator of X(s) can be written as (s + 3)² + 5², and we can express X(s) as follows:

X(s)=\frac{1}{4}[\frac{3s+7}{(s+3)^2+5^2}] \quad (1)

which can be expressed as the sum of two terms that are proportional to entries 10 and 11 in Table 2.3.1.

X(s)=\frac{1}{4}[C_1\frac{5}{(s+3)^2+5^2}+C_2 \frac{s+3}{(s+3)^2+5^2}]

We can obtain the coefficients by noting that

C_1 \frac{5}{(s+3)^2+5^2}+C_2 \frac{s+3}{(s+3)^2+5^2}= \frac{5C_1+C_2(s+3)}{(s+3)^2+5^2} \quad (2)

Comparing the numerators of equations (1) and (2), we see that

5C_1+C_2(s+3)=C_2s+5C_1+3C_2=3s+7

which gives C_2 = 3 \text{ and } 5C_1 + 3C_2 = 7. \text{ Thus, } C_1 = −2/5. The inverse transform is

x(t)=\frac{1}{4}C_1e^{-3t} \sin 5t+\frac{1}{4}C_2e^{-3t} \cos5t = -\frac{1}{10} e^{-3t} \sin5t + \frac{3}{4}e^{-3t} \cos5t

b. The denominator roots are distinct and the expansion (2.8.3) gives

x(t)=(-0.0147-0.3912j)e^{(-3+5j)t}+(-0.0147-0.3912j)e^{(-3-5j)t}+0.0294 \quad (2.8.3)

X(s)=\frac{3s+7}{4s^2+24s+136}=\frac{3s+7}{4(s+3-5j)(s+3+5j)} \\ = \frac{C_1}{s+3-5j}+\frac{C_2}{s+3+5j}

where, from (2.8.4),

\frac{C+jD}{s+a-jb}+\frac{C-jD}{s+a+jb} \quad (2.8.4)

C_1= \underset{s \rightarrow -3+5j}{\text{lim}}(s+3-5j)X(s)= \underset{s \rightarrow -3+5j}{\text{lim}} \frac{3s+7}{4(s+3+5j)} \\ =\frac{-2+15j}{40j}=\frac{15+2j}{40}

This can be expressed in complex exponential form as follows (see Table 2.1.3):

C_1=|C_1|e^{j \phi}= |\frac{15+2j}{40}|e^{j \phi}=\frac{\sqrt{229}}{40}e^{j \phi}

where 𝜙 = tan^{−1}(2/15) = 0.1326 rad.

The second coefficient is

C_2=\underset{s \rightarrow -3-5j}{\text{lim}}(s+3+5j)X(s)= \underset{s \rightarrow -3-5j}{\text{lim}} \frac{3s+7}{4(s+3-5j)} \\ = \frac{2+15j}{40j}=\frac{15-2j}{40}

Note that C_1 and C_2 are complex conjugates. This will always be the case for coefficients of complex-conjugate roots in a partial-fraction expansion. Thus, C_2=|C_1|e^{-j \phi}= \sqrt{229}e^{-0.1326j}/40.

The inverse transform gives

x(t)=C_1e^{(-3+5j)t}+C_2e^{(-3-5j)t}=C_1e^{-3t}e^{5jt}+C_2e^{-3t}e^{-5jt} \\ =|C_1|e^{-3t}[e^{(5t+ \phi)j}+e^{-(5t+ \phi)j}]=2|C_1|e^{-3t} \cos(5t+\phi)

where we have used the relation e^{j \theta}+e^{-j \theta}=2 \cos \theta, which can be derived from the Euler identity (Table 2.1.4). Thus,

x(t)=\frac{\sqrt{229}}{20}e^{-3t} \cos (5t+0.1326)

This answer is equivalent to that found in part (a), as can be seen by applying the trigonometric identity cos(5t + 𝜙) = cos 5t cos 𝜙 − sin 5tsin 𝜙.

Table 2.3.1 Table of Laplace transform pairs.
X(s) x(t), t ≥ 0
1.                1 \delta(t), \text{unit impulse}
2.                \frac{1}{s} u_s(t), \text{unit step}
3.                \frac{c}{s} \text{constant, c}
4.                \frac{e^{-sD}}{s} u_s(t-D), \text{ shifted unit step}
5.                \frac{n!}{s^{n+1}} t^n
6.                \frac{1}{s+a} e^{-at}
7.                \frac{1}{(s+a)^n} \frac{1}{(n-1)!}t^{n-1}e^{-at}
8.                \frac{b}{s^2+b^2} \sin \ bt
9.                \frac{s}{s^2+b^2} \cos \ bt
10.                \frac{b}{(s+a)^2+b^2} e^{-at} \sin \ bt
11.                \frac{s+a}{(s+a)^2+b^2} e^{-at} \cos \ bt
12.                \frac{a}{s(s+a)} 1-e^{-at}
13.                \frac{1}{(s+a)(s+b)} \frac{1}{b-a}(e^{-at}-e^{-bt})
14.                \frac{s+p}{(s+a)(s+b)} \frac{1}{b-a}[(p-a)e^{-at}-(p-b)e^{-bt}]
15.                \frac{1}{(s+a)(s+b)(s+c)} \frac{e^{-at}}{(b-a)(c-a)}+\frac{e^{-bt}}{(c-b)(a-b)}+\frac{e^{-ct}}{(a-c)(b-c)}
16.                \frac{s+p}{(s+a)(s+b)(s+c)} \frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)}+\frac{(p-c)e^{-ct}}{(a-c)(b-c)}
17.                \frac{b}{s^2-b^2} \sinh \ bt
18.                \frac{s}{s^2-b^2} \cosh \ bt
19.                \frac{a^2}{s^2(s+a)} at-1+e^{-at}
20.                \frac{a^2}{s(s+a)^2} 1-(at+1)e^{-at}
21.                \frac{\omega_n^2}{s^2+2\zeta \omega_ns+\omega_n^2} \frac{\omega_n}{\sqrt{1- \zeta^2}}e^{-\zeta \omega_nt} \sin \omega_n \sqrt{1-\zeta^2}t
22.                \frac{s}{s^2+2\zeta \omega_ns+\omega_n^2} -\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin (\omega_n \sqrt{1-\zeta^2} t- \phi), \phi= \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}
23.                \frac{\omega_n^2}{s(s^2+2\zeta \omega_ns + \omega_n^2)} 1-\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin (\omega_n \sqrt{1-\zeta^2}t+\phi), \phi= \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}
24.                \frac{1}{s[(s+a)^2+b^2]} \frac{1}{a^2+b^2}[1-(\frac{a}{b} \sin \ bt + \cos \ bt) e^{-at}]
25.                \frac{b^2}{s(s^2+b^2)} 1- \cos \ bt
26.                \frac{b^3}{s^2(s^2+b^2)} bt – \sin \ bt
27.                \frac{2b^3}{(s^2+b^2)^2} \sin \ bt – bt \ \cos \ bt
28.                \frac{2bs}{(s^2+b^2)^2} t \ \sin \ bt
29.                \frac{s^2-b^2}{(s^2+b^2)^2} t \ \cos \ bt
30.                \frac{s}{(s^2+b_1^2)(s^2+b_2^2)} \frac{1}{b_2^2-b_1^2}(\cos b_1t- \cos \ b_2t), \quad (b_1^2 \neq b_2^2)
31.                \frac{s^2}{(s^2+b^2)^2} \frac{1}{2b}(\sin \ bt + bt \ \cos bt)

 

Table 2.1.4 The exponential function.
Taylor series
e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+…+ \frac{x^n}{n!}+…
Euler’s identities
e^{j \theta}= \cos \theta + j \sin \theta
e^{-j \theta}= \cos \theta – j \sin \theta
Limits
\underset{x \rightarrow \infty}{\text{lim}} xe^{-x}=0 \quad \text{if x is real.}
\underset{x \rightarrow \infty}{\text{lim}} e^{-st}=0 \quad \text{if the real part of s is positive.}
\text{If a is real and positive,}
e^{-at} < 0.02 \ if \ t > 4/a.
e^{-at} < 0.01 \ if \ t > 5/a.
\text{The time constant is} \ \tau=1/a.
Table 2.1.3 Roots and complex numbers.
The quadratic formula
The roots of as² + bs + c = 0 are given by
s=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
For complex roots, s = −𝜎 ± j𝜔, the quadratic can be expressed as
as² + bs + c = a [ (s +𝜎)² + 𝜔²] = 0
Complex numbers
Rectangular representation:
z = x + jy, j = \sqrt{-1}
Complex conjugate:
\overset{-}{z} = x − jy
Magnitude and angle:
|z| = \sqrt{x^2+y^2} \quad \theta = \angle z = \tan ^{-1} \frac{y}{x}  (See Figure 2.1.11)
Polar and exponential representation:
z = |z| \angle \theta = |z| e^{j \theta}
Equality: If z_1 = x_1 + jy_1 and z_2 = x_2 + jy_2, then
z_1 = z_2 if x_1 = x_2 and y_1 = y_2
Addition:
z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)
Multiplication:
z_1z_2 = |z_1||z_2|∠(\theta_1 + \theta_2)
z_1z_2 = (x_1x_2− y_1y_2) + j(x_1y_2 + x_2y_1)
Complex-conjugate multiplication:
(x + jy)(x − jy) = x² + y²
Division:
\frac{1}{z}= \frac{1}{x+yj} = \frac{x-jy}{x²+y²}
\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|} \angle (\theta_1-\theta_2)
\frac{z_1}{z_2}=\frac{x_1+jy_1}{x_2+jy_2}=\frac{x_1+jy_1}{x_2+jy_2} \frac{x_2-jy_2}{x_2-jy_2}=\frac{(x_1+jy_1)(x_2-jy_2)}{x_2^2+y_2^2}
2.1.11

Related Answered Questions

Question: 2.1.6

Verified Answer:

We cannot use Table 2.1.1 for this part because th...
Question: 2.7.5

Verified Answer:

There are four repeated roots (s = 0) and one dist...
Question: 2.7.2

Verified Answer:

The denominator roots are s= −12/3= −4, s=0, and s...