Question 2.7.7: Two Complex Roots Use two methods to obtain the inverse Lapl...
Two Complex Roots
Use two methods to obtain the inverse Laplace transform of
X(s)=\frac{3s+7}{4s^2+24s+136}= \frac{3s+7}{4(s^2+6s+34)}
Learn more on how we answer questions.
a. The denominator roots are s = −3 ± 5j. To avoid complex-valued coefficients, we note that the denominator of X(s) can be written as (s + 3)² + 5², and we can express X(s) as follows:
X(s)=\frac{1}{4}[\frac{3s+7}{(s+3)^2+5^2}] \quad (1)
which can be expressed as the sum of two terms that are proportional to entries 10 and 11 in Table 2.3.1.
X(s)=\frac{1}{4}[C_1\frac{5}{(s+3)^2+5^2}+C_2 \frac{s+3}{(s+3)^2+5^2}]
We can obtain the coefficients by noting that
C_1 \frac{5}{(s+3)^2+5^2}+C_2 \frac{s+3}{(s+3)^2+5^2}= \frac{5C_1+C_2(s+3)}{(s+3)^2+5^2} \quad (2)
Comparing the numerators of equations (1) and (2), we see that
5C_1+C_2(s+3)=C_2s+5C_1+3C_2=3s+7
which gives C_2 = 3 \text{ and } 5C_1 + 3C_2 = 7. \text{ Thus, } C_1 = −2/5. The inverse transform is
x(t)=\frac{1}{4}C_1e^{-3t} \sin 5t+\frac{1}{4}C_2e^{-3t} \cos5t = -\frac{1}{10} e^{-3t} \sin5t + \frac{3}{4}e^{-3t} \cos5t
b. The denominator roots are distinct and the expansion (2.8.3) gives
x(t)=(-0.0147-0.3912j)e^{(-3+5j)t}+(-0.0147-0.3912j)e^{(-3-5j)t}+0.0294 \quad (2.8.3)
X(s)=\frac{3s+7}{4s^2+24s+136}=\frac{3s+7}{4(s+3-5j)(s+3+5j)} \\ = \frac{C_1}{s+3-5j}+\frac{C_2}{s+3+5j}
where, from (2.8.4),
\frac{C+jD}{s+a-jb}+\frac{C-jD}{s+a+jb} \quad (2.8.4)
C_1= \underset{s \rightarrow -3+5j}{\text{lim}}(s+3-5j)X(s)= \underset{s \rightarrow -3+5j}{\text{lim}} \frac{3s+7}{4(s+3+5j)} \\ =\frac{-2+15j}{40j}=\frac{15+2j}{40}
This can be expressed in complex exponential form as follows (see Table 2.1.3):
C_1=|C_1|e^{j \phi}= |\frac{15+2j}{40}|e^{j \phi}=\frac{\sqrt{229}}{40}e^{j \phi}
where 𝜙 = tan^{−1}(2/15) = 0.1326 rad.
The second coefficient is
C_2=\underset{s \rightarrow -3-5j}{\text{lim}}(s+3+5j)X(s)= \underset{s \rightarrow -3-5j}{\text{lim}} \frac{3s+7}{4(s+3-5j)} \\ = \frac{2+15j}{40j}=\frac{15-2j}{40}
Note that C_1 and C_2 are complex conjugates. This will always be the case for coefficients of complex-conjugate roots in a partial-fraction expansion. Thus, C_2=|C_1|e^{-j \phi}= \sqrt{229}e^{-0.1326j}/40.
The inverse transform gives
x(t)=C_1e^{(-3+5j)t}+C_2e^{(-3-5j)t}=C_1e^{-3t}e^{5jt}+C_2e^{-3t}e^{-5jt} \\ =|C_1|e^{-3t}[e^{(5t+ \phi)j}+e^{-(5t+ \phi)j}]=2|C_1|e^{-3t} \cos(5t+\phi)
where we have used the relation e^{j \theta}+e^{-j \theta}=2 \cos \theta, which can be derived from the Euler identity (Table 2.1.4). Thus,
x(t)=\frac{\sqrt{229}}{20}e^{-3t} \cos (5t+0.1326)
This answer is equivalent to that found in part (a), as can be seen by applying the trigonometric identity cos(5t + 𝜙) = cos 5t cos 𝜙 − sin 5tsin 𝜙.
Table 2.3.1 Table of Laplace transform pairs. | |
X(s) | x(t), t ≥ 0 |
1. 1 | \delta(t), \text{unit impulse} |
2. \frac{1}{s} | u_s(t), \text{unit step} |
3. \frac{c}{s} | \text{constant, c} |
4. \frac{e^{-sD}}{s} | u_s(t-D), \text{ shifted unit step} |
5. \frac{n!}{s^{n+1}} | t^n |
6. \frac{1}{s+a} | e^{-at} |
7. \frac{1}{(s+a)^n} | \frac{1}{(n-1)!}t^{n-1}e^{-at} |
8. \frac{b}{s^2+b^2} | \sin \ bt |
9. \frac{s}{s^2+b^2} | \cos \ bt |
10. \frac{b}{(s+a)^2+b^2} | e^{-at} \sin \ bt |
11. \frac{s+a}{(s+a)^2+b^2} | e^{-at} \cos \ bt |
12. \frac{a}{s(s+a)} | 1-e^{-at} |
13. \frac{1}{(s+a)(s+b)} | \frac{1}{b-a}(e^{-at}-e^{-bt}) |
14. \frac{s+p}{(s+a)(s+b)} | \frac{1}{b-a}[(p-a)e^{-at}-(p-b)e^{-bt}] |
15. \frac{1}{(s+a)(s+b)(s+c)} | \frac{e^{-at}}{(b-a)(c-a)}+\frac{e^{-bt}}{(c-b)(a-b)}+\frac{e^{-ct}}{(a-c)(b-c)} |
16. \frac{s+p}{(s+a)(s+b)(s+c)} | \frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)}+\frac{(p-c)e^{-ct}}{(a-c)(b-c)} |
17. \frac{b}{s^2-b^2} | \sinh \ bt |
18. \frac{s}{s^2-b^2} | \cosh \ bt |
19. \frac{a^2}{s^2(s+a)} | at-1+e^{-at} |
20. \frac{a^2}{s(s+a)^2} | 1-(at+1)e^{-at} |
21. \frac{\omega_n^2}{s^2+2\zeta \omega_ns+\omega_n^2} | \frac{\omega_n}{\sqrt{1- \zeta^2}}e^{-\zeta \omega_nt} \sin \omega_n \sqrt{1-\zeta^2}t |
22. \frac{s}{s^2+2\zeta \omega_ns+\omega_n^2} | -\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin (\omega_n \sqrt{1-\zeta^2} t- \phi), \phi= \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta} |
23. \frac{\omega_n^2}{s(s^2+2\zeta \omega_ns + \omega_n^2)} | 1-\frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin (\omega_n \sqrt{1-\zeta^2}t+\phi), \phi= \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta} |
24. \frac{1}{s[(s+a)^2+b^2]} | \frac{1}{a^2+b^2}[1-(\frac{a}{b} \sin \ bt + \cos \ bt) e^{-at}] |
25. \frac{b^2}{s(s^2+b^2)} | 1- \cos \ bt |
26. \frac{b^3}{s^2(s^2+b^2)} | bt – \sin \ bt |
27. \frac{2b^3}{(s^2+b^2)^2} | \sin \ bt – bt \ \cos \ bt |
28. \frac{2bs}{(s^2+b^2)^2} | t \ \sin \ bt |
29. \frac{s^2-b^2}{(s^2+b^2)^2} | t \ \cos \ bt |
30. \frac{s}{(s^2+b_1^2)(s^2+b_2^2)} | \frac{1}{b_2^2-b_1^2}(\cos b_1t- \cos \ b_2t), \quad (b_1^2 \neq b_2^2) |
31. \frac{s^2}{(s^2+b^2)^2} | \frac{1}{2b}(\sin \ bt + bt \ \cos bt) |
Table 2.1.4 The exponential function. |
Taylor series |
e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+…+ \frac{x^n}{n!}+… |
Euler’s identities |
e^{j \theta}= \cos \theta + j \sin \theta |
e^{-j \theta}= \cos \theta – j \sin \theta |
Limits |
\underset{x \rightarrow \infty}{\text{lim}} xe^{-x}=0 \quad \text{if x is real.} |
\underset{x \rightarrow \infty}{\text{lim}} e^{-st}=0 \quad \text{if the real part of s is positive.} |
\text{If a is real and positive,} |
e^{-at} < 0.02 \ if \ t > 4/a. |
e^{-at} < 0.01 \ if \ t > 5/a. |
\text{The time constant is} \ \tau=1/a. |
Table 2.1.3 Roots and complex numbers. |
The quadratic formula |
The roots of as² + bs + c = 0 are given by |
s=\frac{-b \pm \sqrt{b^2-4ac}}{2a} |
For complex roots, s = −𝜎 ± j𝜔, the quadratic can be expressed as |
as² + bs + c = a [ (s +𝜎)² + 𝜔²] = 0 |
Complex numbers |
Rectangular representation: |
z = x + jy, j = \sqrt{-1} |
Complex conjugate: |
\overset{-}{z} = x − jy |
Magnitude and angle: |
|z| = \sqrt{x^2+y^2} \quad \theta = \angle z = \tan ^{-1} \frac{y}{x} (See Figure 2.1.11) |
Polar and exponential representation: |
z = |z| \angle \theta = |z| e^{j \theta} |
Equality: If z_1 = x_1 + jy_1 and z_2 = x_2 + jy_2, then |
z_1 = z_2 if x_1 = x_2 and y_1 = y_2 |
Addition: |
z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2) |
Multiplication: |
z_1z_2 = |z_1||z_2|∠(\theta_1 + \theta_2) |
z_1z_2 = (x_1x_2− y_1y_2) + j(x_1y_2 + x_2y_1) |
Complex-conjugate multiplication: |
(x + jy)(x − jy) = x² + y² |
Division: |
\frac{1}{z}= \frac{1}{x+yj} = \frac{x-jy}{x²+y²} |
\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|} \angle (\theta_1-\theta_2) |
\frac{z_1}{z_2}=\frac{x_1+jy_1}{x_2+jy_2}=\frac{x_1+jy_1}{x_2+jy_2} \frac{x_2-jy_2}{x_2-jy_2}=\frac{(x_1+jy_1)(x_2-jy_2)}{x_2^2+y_2^2} |
