Question 9.2: Use Cramer’s rule to solve 0.3x1 + 0.52x2 + x3 = −0.01 0.5x1...

Use Cramer’s rule to solve
0.3x_1 + 0.52x_2 + x_3 = −0.01
0.5x_1 + x_2 + 1.9x_3 = 0.67
0.1x_1 + 0.3 x_2 + 0.5x_3 = −0.44

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The determinant D can be evaluated as [Eq. (9.1)]:

D = a_{11} \left|\begin{matrix}a_{22} &a_{23}\\ a_{32}& a_{33}\end{matrix}\right| − a_{12} \left|\begin{matrix}a_{21}& a_{23}\\ a_{31}& a_{33}\end{matrix}\right| +a_{13} \left|\begin{matrix}a_{21} &a_{22}\\ a_{31}& a_{32}\end{matrix}\right|\qquad (9.1)\\[0.5 cm] D = 0.3 \left|\begin{matrix}1 &1.9\\ 0.3& 0.5\end{matrix}\right| − 0.52 \left|\begin{matrix}0.5& 1.9\\ 0.1& 0.5\end{matrix}\right| +1 \left|\begin{matrix}0.5&1\\0.1& 0.3\end{matrix}\right| = – 0.0022

The solution can be calculated as

x_1 = \frac{\left|\begin{matrix}−0.01& 0.52 &1\\ 0.67 &1 &1.9\\ −0.44& 0.3& 0.5\end{matrix}\right|}{−0.0022}=\frac{0.03278}{−0.0022}=-14.9

 

x_2 = \frac{\left|\begin{matrix}0.3& −0.01 &1\\ 0.5 &0.67& 1.9\\ 0.1& −0.44 & 0.5\end{matrix}\right|}{−0.0022}=\frac{0.0649}{−0.0022}=-29.5

 

x_3 = \frac{\left|\begin{matrix}0.3& 0.52 &−0.01\\ 0.5& 1& 0.67\\ 0.1& 0.3& −0.44\end{matrix}\right|}{−0.0022}=\frac{-0.04356}{−0.0022}=19.8

Related Answered Questions