Question 10.10: Use Equation 10.142 to obtain the equations of motion of a t...

Use Equation 10.142 to obtain the equations of motion of a torque-free, axisymmetric dual-spin satellite, such as the one shown in Figure 10.22.

\left\{ H _{G}\right\}=\left\lgroup \left[ I _{G}^{(\text {body })}\right]+\sum\limits_{i=1}^{n}\left[ I _{G}^{(i)}\right] \right\rgroup \{ \omega \}+\sum\limits_{i=1}^{n}\left[ I _{G_{i}}^{(i)}\right]\left\{ \omega _{ rel }^{(i)}\right\}                  (10.142)

10.22
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In this case we have only one “reaction wheel,” namely, the platform p . The “body” is the rotor r. In Equation 10.142 we make the following substitutions (← means “is replaced by ”):

\omega \longleftarrow \omega^{(r)}
\omega_{ rel }^{(i)} \leftarrow \omega_{ rel }^{(p)}
\left[ I _{G}^{(b o d y)}\right] \leftarrow\left[ I _{G}^{(r)}\right]
\sum\limits_{i=1}^{n}\left[ I _{G}^{(i)}\right] \longleftarrow\left[ I _{G}^{(p)}\right]
\sum\limits_{i=1}^{n}\left[ I _{G_{i}}^{(i)}\right]\left\{ \omega _{ rel }^{(i)}\right\} \longleftarrow\left[ I _{G_{p}}^{(p)}\right]\left\{ \omega _{ rel }^{(p)}\right\}

so that Equation 10.142 becomes

\left\{ H _{G}\right\}=\left(\left[ I _{G}^{(r)}\right]+\left[ I _{G}^{(p)}\right]\right)\left\{\omega^{(r)}\right\}+\left[ I _{G_{p}}^{(p)}\right]\left\{\omega_{ rel }^{(p)}\right\}                (a)

Since \left. M _{G_{\text {net }}}\right)_{\text {external }}= 0, Equation 10.143 yields

\left.\left. M _{G_{\text {net }}}\right)_{\text {external }}=\frac{d H _{G}}{d t}\right)_{\text {rel }}+\omega \times H _{G}                    (10.143)

\left(\left[ I _{G}^{(r)}\right]+\left[ I _{G}^{(p)}\right]\right)\left\{\dot{\omega}^{(r)}\right\}+\left[ I _{G_{p}}^{(p)}\right]\left\{\dot{\omega}_{ rel }^{(p)}\right\}+\left\{\omega^{(r)}\right\} \times\left(\left(\left[ I _{G}^{(r)}\right]+\left[ I _{G}^{(p)}\right]\right)\left\{\omega^{(r)}\right\}+\left[ I _{G_{p}}^{(p)}\right]\left\{\omega_{ rel }^{(p)}\right\}\right)=\{ 0 \}             (b)

The components of the matrices and vectors in (b) relative to the principal xyz body frame axes attached to the rotor are

\left[ I _{G}^{(r)}\right]=\left[\begin{array}{ccc}A_{r} & 0 & 0 \\0 & A_{r} & 0 \\0 & 0 & C_{r}\end{array}\right] \quad\left[ I _{G}^{(p)}\right]=\left[\begin{array}{ccc}A_{p} & 0 & 0 \\0 & A_{p} & 0 \\0 & 0 & C_{p}\end{array}\right] \quad\left[ I _{G_{p}}^{(p)}\right]=\left[\begin{array}{ccc}\bar{A}_{p} & 0 & 0 \\0 & \bar{A}_{p} & 0 \\0 & 0 & C_{p}\end{array}\right]               (c)

and

\left\{\omega^{(r)}\right\}=\left\{\begin{array}{c}\omega_{x}^{(r)} \\\omega_{y}^{(r)} \\\omega_{z}^{(r)}\end{array}\right\} \quad\left\{\omega_{ rel }^{(p)}\right\}=\left\{\begin{array}{c}0 \\0 \\\omega_{p}\end{array}\right\}              (d)

A_{r}, C_{r}, A_{p} \text { and } C_{p} are the rotor and platform principal moments of inertia about the vehicle center of mass G , whereas \bar{A}_{p} is the moment of inertia of the platform about its own center of mass. We also used the fact that \bar{C}_{p}=C_{p}, which of course is due to the fact that G and G_{p} both lie on the z axis. This notation is nearly identical to that employed in our consideration of the stability of dual-spin satellites in Section 10.4 (wherein \omega_{r}=\omega_{z}^{(r)} \text { and } \omega_{\perp}=\omega_{x}^{(r)} \hat{ i }+\omega_{y}^{(r)} \hat{ j } ). Substituting (c) and (d) into each of the four terms in (b), we get

\left(\left[ I _{G}^{(r)}\right]+\left[ I _{G}^{(p)}\right]\right)\left\{\dot{\omega}^{(r)}\right\}=\left[\begin{array}{ccc}A_{r}+A_{p} & 0 & 0 \\0 & A_{r}+A_{p} & 0 \\0 & 0 & C_{r}+C_{p}\end{array}\right]\left\{\begin{array}{c}\dot{\omega}_{x}^{(r)} \\\dot{\omega}_{y}^{(r)} \\\dot{\omega}_{z}^{(r)}\end{array}\right\}=\left\{\begin{array}{l}\left(A_{r}+A_{p}\right) \dot{\omega}_{x}^{(r)} \\\left(A_{r}+A_{p}\right) \dot{\omega}_{y}^{(r)} \\\left(C_{r}+C_{p}\right) \dot{\omega}_{z}^{(r)}\end{array}\right\}            (e)

\left\{\omega^{(r)}\right\} \times\left(\left[ I _{G}^{(r)}\right]+\left[ I _{G}^{(p)}\right]\right)\left\{\omega^{(r)}\right\}=\left\{\begin{array}{c}\omega_{x}^{(r)} \\\omega_{y}^{(r)} \\\omega_{z}^{(r)}\end{array}\right\} \times\left\{\begin{array}{c}\left(A_{r}+A_{p}\right) \omega_{x}^{(r)} \\\left(A_{r}+A_{p}\right) \omega_{y}^{(r)} \\\left(C_{r}+C_{p}\right) \omega_{z}^{(r)}\end{array}\right\}=\left\{\begin{array}{c}{\left[\left(C_{p}-A_{p}\right)+\left(C_{r}-A_{r}\right)\right] \omega_{y}^{(r)} \omega_{z}^{(r)}} \\{\left[\left(A_{p}-C_{p}\right)+\left(A_{r}-C_{r}\right)\right] \omega_{x}^{(r)} \omega_{z}^{(r)}} \\0\end{array}\right\}                (f)

\left[ I _{G_{p}}^{(p)}\right]\left\{\dot{\omega}_{ rel }^{(p)}\right\}=\left[\begin{array}{ccc}\bar{A}_{p} & 0 & 0 \\0 & \bar{A}_{p} & 0 \\0 & 0 & C_{p}\end{array}\right]\left\{\begin{array}{c}0 \\0 \\\dot{\omega}_{p}\end{array}\right\}=\left\{\begin{array}{c}0 \\0 \\C_{p} \dot{\omega}_{p}\end{array}\right\}             (g)

\left\{\omega^{(r)}\right\} \times\left[ I _{G_{p}}^{(p)}\right]\left\{\omega_{\text {rel }}^{(p)}\right\}=\left\{\begin{array}{c}\omega_{x}^{(r)} \\\omega_{y}^{(r)} \\\omega_{z}^{(r)}\end{array}\right\} \times\left[\begin{array}{ccc}\bar{A}_{p} & 0 & 0 \\0 & \bar{A}_{p} & 0 \\0 & 0 & C_{p}\end{array}\right]\left\{\begin{array}{c}0 \\0 \\\omega_{p}\end{array}\right\}=\left\{\begin{array}{c}C_{p} \omega_{y}^{(r)} \omega_{p} \\-C_{p} \omega_{x}^{(r)} \omega_{p} \\0\end{array}\right\}             (h)

With these four expressions, (b) becomes

\left\{\begin{array}{c}\left(A_{r}+A_{p}\right) \dot{\omega}_{x}^{(r)} \\\left(A_{r}+A_{p}\right) \dot{\omega}_{y}^{(r)} \\\left(C_{r}+C_{p}\right) \dot{\omega}_{z}^{(r)}\end{array}\right\}+\left\{\begin{array}{c}{\left[\left(C_{p}-A_{p}\right)+\left(C_{r}-A_{r}\right)\right] \omega_{y}^{(r)} \omega_{z}^{(r)}} \\{\left[\left(A_{p}-C_{p}\right)+\left(A_{r}-C_{r}\right)\right] \omega_{x}^{(r)} \omega_{z}^{(r)}} \\0\end{array}\right\}+\left\{\begin{array}{c}0 \\0 \\C_{p} \dot{\omega}_{p}\end{array}\right\}+\left\{\begin{array}{c}C_{p} \omega_{y}^{(r)} \omega_{p} \\-C_{p} \omega_{x}^{(r)} \omega_{p} \\0\end{array}\right\}=\left\{\begin{array}{l}0 \\0 \\0\end{array}\right\}               (i)

Combining the four vectors on the left-hand side, and then extracting the three components of the vector equation finally yields the three equations of motion of the dual-spin satellite in the body frame,

\begin{array}{r}A \dot{\omega}_{x}^{(r)}+(C-A) \omega_{y}^{(r)} \omega_{z}^{(r)}+C_{p} \omega_{y}^{(r)} \omega_{p}=0 \\A \dot{\omega}_{y}^{(r)}+(A-C) \omega_{x}^{(r)} \omega_{z}^{(r)}-C_{p} \omega_{x}^{(r)} \omega_{p}=0 \\C \dot{\omega}_{z}^{(r)}+C_{p} \dot{\omega}_{p}=0\end{array}                   (j)

where A and C are the combined transverse and axial moments of inertia of the dual-spin vehicle about its center of mass,

A=A_{r}+A_{p} \quad C=C_{r}+C_{p}               (k)

The three equations (j) involve four unknowns, \omega_{x}^{(r)}, \omega_{y}^{(r)}, \omega_{z}^{(r)} \text { and } \omega_{p}. A fourth equation is required to account for the means of providing the relative velocity \omega_{p} between the platform and the rotor. Friction in the axle bearing between the platform and the rotor would eventually cause \omega_{p} to go to zero, as pointed out in Section 10.4. We may assume that the electric motor in the bearing acts to keep \omega_{p} constant at a specified value, so that \dot{\omega}_{p}=0. Then Equation ( j )_{3} implies that \omega_{z}^{(r)}= constant  as well. Thus, \omega_{p} \text { and } \omega_{z}^{(r)} and removed from our list of unknowns, leaving \omega_{x}^{(r)} \text { and } \omega_{y}^{(r)} to be governed by the first two equations in (j). Note that we actually employed ( j )_{3} in the solution of Example 10.9 above.

Related Answered Questions