Question 3.6: Use the iterative method to solve [K]{U} = {F} where. [K]=[2...

Use the iterative method to solve [K]{U} = {F} where.

[K]=\begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0\\ 0 & -1 & 2 & -1 & 0\\ 0 & 0 & -1 & 2 & -1\\ 0 & 0 & 0 & -1 & 2 \end{bmatrix} and  \left\{F\right\} =\begin{Bmatrix} 5 \\ 2 \\ 2 \\ 2 \\5 \end{Bmatrix}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let \left\{U\right\} ^{(0)} = [1 1 1 1 1] and the terminate tolerance ε = 0.0001.

Using Eq. (3.99) to execute the iterative process, the process to obtain the final solutions is

U^{(k+ 1)}_{i} =\frac{1}{k_{ii} } \left[F_{i}-\sum\limits_{j=1;j\neq i}^{N}{K_{ij}U^{(k)}_{j} } \right] , (i=1,2,…N)         (3.99)

Step \left\{x_{i} \right\} ^{(k)} Convergence
0 [1 1 1 1 1]
1 [3.0000 2.0000 2.0000 2.0000 3.0000] 3.5000
10 [6.5762 8.6270 9.1523 8.6270 6.5762] 0.7750
20 [7.6621 10.4369 11.3242 10.4369 7.6621] 0.1839
30 [7.9198 10.8664 11.8396 10.8664 7.9198] 0.0436
40 [7.9810 10.9683 11.9619 10.9683 7.9810] 0.0104
50 [7.9955 10.9925 11.9910 10.9925 7.9955] 0.0025
60 [7.9989 10.9982 11.9979 10.9982 7.9989] 5.8325e-04
70 [7.9997 10.9996 11.9995 10.9996 7.9997] 1.3841e-04
73 [7.9998 10.9997 11.9997 10.9997 7.9998] 8.9898e-05

Related Answered Questions

Question: 3.3

Verified Answer:

The solid domain in Fig. 3.17a is decomposed into ...