Question 7.1: Use the method of lines to construct a numerical solution to...

Use the method of lines to construct a numerical solution to the onedimensional unsteady heat conduction equation

\frac{∂T}{∂t} = α \frac{∂^2T}{∂x^2}                               (7.2.1)

subject to the boundary conditions

T(x_l, t) = 0,   T(x_r, t) = 1                                                    (7.2.2)

as well as an initial condition,

T(x, 0) = 2; x ∈ (x_l, x_r)                                               (7.2.3)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The first step is the definition of the spatial discretization step
Δx =\frac{ x_r − x_l}{n − 1 }                                    (7.2.4)
At each node i, there is now a time-dependent variable T_i(t) that we seek to determine. Using a centered finite difference approximation of the spatial derivative for an interior node, the PDE in Eq. (7.2.1) becomes

\frac{dT_i}{dt}=\alpha \left[\frac{T_{i+1}(t) − 2T_i(t) + T_{i−1}(t)}{\Delta x^2} \right]                                            (7.2.5)

Note that this is now a system of coupled ODEs for the n variables T_i, since these discrete variables no longer depend on position. The initial condition at the interior nodes is the initial condition for the original PDE (7.2.3),

T_i(t = 0) = 2                                        (7.2.6)

The Dirichlet conditions imposed in Eqs. (7.2.2) suggest that the boundary nodes have a constant value for all times, i.e. T_1 = 0  and  T_n = 1. There are two ways that we can handle this situation. One option is to substitute these fixed values into the ODEs for the i = 2 and i = n − 1 nodes. As a result, Eq. (7.2.5) for node i = 2 becomes

\frac{dT_2}{dt}=\alpha \left[\frac{T_3(t)-2T_2(t)}{\Delta x^2} \right]                     (7.2.7)

and for node i = n − 1 we have

\frac{dT_{n-1}}{dt}=\alpha \left[\frac{1 − 2T_{n−1}(t) + T_{n−2}(t)}{\Delta x^2} \right]                           (7.2.8)

We then proceed by integrating the system of n − 2 ODEs embodied by Eqs. (7.2.5)– (7.2.8). Alternatively, and perhaps more conveniently, the following ODEs can be directly postulated for the boundary nodes,

\frac{dT_1}{dt} = 0,   T_1(0) = 0                                (7.2.9)

\frac{dT_n}{dt} = 0,  T_n(0) = 1                                 (7.2.10)

which together with the ODEs for the interior nodes lead to a system of n coupled ODEs in n unknown functions T_i(t). In compact form these will be

\frac{dT}{dt} = f(T),                      T(0) = T_0                            (7.2.11)

where T is the vector of the unknown variables

T=\begin{bmatrix} T_1 \\ T_2 \\ \vdots \\ T_n \end{bmatrix}                              (7.2.12)

f =\frac{ α}{Δx^2}  \begin{bmatrix} 0 \\ (T_3 − 2T_2 + T_1) \\ \vdots \\ (T_{i+1} − 2T_i + T_{i−1}) \\ \vdots \\ (T_n − 2T_{n−1} + T_{n−2})\\ 0 \end{bmatrix}                             (7.2.13)

and the initial condition vector is

T_0=\begin{bmatrix} 0 \\ 2 \\ \vdots \\ 2 \\ 1 \end{bmatrix}                              (7.2.14)

We can then integrate Eq. (7.2.11) using any of the methods we studied for systems of ordinary differential equations (e.g., RK4).

Related Answered Questions