Question 12.1.2: Use the Poisson finite-difference method with n = 6 , m = 5,...

Use the Poisson finite-difference method with n = 6 , m = 5, and a tolerance of 10^{-10} to approximate the solution to

\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)=x e^{y}, \quad 0<x<2, \quad 0<y<1 ,

with the boundary conditions

\begin{array}{ll} u(0, y)=0, & u(2, y)=2 e^{y}, \quad 0 \leq y \leq 1 \\ u(x, 0)=x, & u(x, 1)=e x, \quad 0 \leq x \leq 2 \end{array}

and compare the results with the exact solution u(x, y)=x e^{y} .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Algorithm 12.1 with a maximum number of iterations set at N = 100 gives the results in Table 12.2. The stopping criterion for the Gauss-Seidel method in Step 17 requires that

\left|w_{i j}^{(l)}-w_{i j}^{(l-1)}\right| \leq 10^{-10} ,

for each i = 1, … , 5 and j = 1, … , 4. The solution to the difference equation was accurately obtained, and the procedure stopped at l = 61. The results, along with the correct values, are presented in Table 12.2.

Table 12.2

\begin{array}{lcccccc}\hline i & j & x_{i} & y_{j} & w_{i, j}^{(61)} & u\left(x_{i}, y_{j}\right) & \left|u\left(x_{i}, y_{j}\right)-w_{i, j}^{(61)}\right| \\\hline 1 & 1 & 0.3333 & 0.2000 & 0.40726 & 0.40713 & 1.30 \times 10^{-4} \\1 & 2 & 0.3333 & 0.4000 & 0.49748 & 0.49727 & 2.08 \times 10^{-4} \\1 & 3 & 0.3333 & 0.6000 & 0.60760 & 0.60737 & 2.23 \times 10^{-4} \\1 & 4 & 0.3333 & 0.8000 & 0.74201 & 0.74185 & 1.60 \times 10^{-4} \\2 & 1 & 0.6667 & 0.2000 & 0.81452 & 0.81427 & 2.55 \times 10^{-4} \\2 & 2 & 0.6667 & 0.4000 & 0.99496 & 0.99455 & 4.08 \times 10^{-4} \\2 & 3 & 0.6667 & 0.6000 & 1.2152 & 1.2147 & 4.37 \times 10^{-4} \\2 & 4 & 0.6667 & 0.8000 & 1.4840 & 1.4837 & 3.15 \times 10^{-4} \\3 & 1 & 1.0000 & 0.2000 & 1.2218 & 1.2214 & 3.64 \times 10^{-4} \\3 & 2 & 1.0000 & 0.4000 & 1.4924 & 1.4918 & 5.80 \times 10^{-4} \\3 & 3 & 1.0000 & 0.6000 & 1.8227 & 1.8221 & 6.24 \times 10^{-4} \\3 & 4 & 1.0000 & 0.8000 & 2.2260 & 2.2255 & 4.51 \times 10^{-4} \\4 & 1 & 1.3333 & 0.2000 & 1.6290 & 1.6285 & 4.27 \times 10^{-4} \\4 & 2 & 1.3333 & 0.4000 & 1.9898 & 1.9891 & 6.79 \times 10^{-4} \\4 & 3 & 1.3333 & 0.6000 & 2.4302 & 2.4295 & 7.35 \times 10^{-4} \\4 & 4 & 1.3333 & 0.8000 & 2.9679 & 2.9674 & 5.40 \times 10^{-4} \\5 & 1 & 1.6667 & 0.2000 & 2.0360 & 2.0357 & 3.71 \times 10^{-4} \\5 & 2 & 1.6667 & 0.4000 & 2.4870 & 2.4864 & 5.84 \times 10^{-4} \\5 & 3 & 1.6667 & 0.6000 & 3.0375 & 3.0369 & 6.41 \times 10^{-4} \\5 & 4 & 1.6667 & 0.8000 & 3.7097 & 3.7092 & 4.89 \times 10^{-4} \\\hline\end{array}

Related Answered Questions