Question 5.2.2: Use Theorem 2 to diagonalize the matrix A = [ 1 0 0 6 -2 0 7...
Use Theorem 2 to diagonalize the matrix
A= \begin{bmatrix} 1&0&0 \\6&-2&0 \\ 7&-4&2 \end{bmatrix}
Learn more on how we answer questions.
Since A is a triangular matrix, by Proposition 1 of Sec. 5.1, the eigenvalues of the matrix A are the diagonal entries
\lambda _{1} = 1 \quad\lambda _{2} = −2 and \quad\lambda _{3} = 2
The corresponding eigenvectors, which are linearly independent, are given, respectively, by
Therefore, by Theorem 2, D = P^{-1}AP, where
D= \begin{bmatrix} 1&0&0 \\0&-2&0 \\ 0&0&2 \end{bmatrix} and P= \begin{bmatrix} 1&0&0 \\2&1&0 \\ 1&1&1\end{bmatrix}
To verify that D =P^{-1}AP, we can avoid finding P^{-1} by showing that
PD = AP
In this case,
PD = \begin{bmatrix} 1&0&0 \\2&1&0 \\ 1&1&1\end{bmatrix} \begin{bmatrix} 1&0&0 \\0&-2&0 \\ 0&0&2 \end{bmatrix} = \begin{bmatrix} 1&0&0 \\2&-2&0 \\ 1&-2&2 \end{bmatrix}
= \begin{bmatrix} 1&0&0 \\6&-2&0 \\ 7&-4&2 \end{bmatrix} \begin{bmatrix} 1&0&0 \\2&1&0 \\ 1&1&1 \end{bmatrix}
= AP