Question 8.7: USING HESS’S LAW TO CALCULATE ΔH° Water gas is the name for ...

USING HESS’S LAW TO CALCULATE ΔH°

Water gas is the name for the mixture of CO and H_{2} prepared by reaction of steam with carbon at 1000 °C:

C(s) + H_{2}O(g)  →  \underset{“Water  gas”}{CO(g)  +  H_{2}(g)}

The hydrogen is then purified and used as a starting material for preparing ammonia. Use the following information to calculate ΔH° in kilojoules for the water-gas reaction:

C(s)  +  O_{2}(g)  →  CO_{2}(g)                                      ΔH° = -393.5 kJ

2  CO(g)  +  O_{2}(g)  →  2  CO_{2}(g)                           ΔH° = -566.0 kJ

2  H_{2}(g)  +  O_{2}(g)  →   2  H_{2}O(g)                       ΔH° = -483.6 kJ

STRATEGY
As in Worked Example 8.6, the idea is to find a combination of the individual reactions whose sum is the desired reaction. In this instance, it’s necessary to reverse the second and third steps and to multiply both by 1/2 to make the overall equation balance. In so doing, the signs of the enthalpy changes for those steps must be changed and multiplied by 1/2. Note that CO_{2}(g)  and  O_{2}(g)cancel because they appear on both the right and left sides of equations.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C(s)  +  \cancel{O_{2}(g)}  →  \cancel{CO_{2}(g)}                                      ΔH° = -393.5 kJ

1/2  [\cancel{2  CO_{2}(g)}  →  2  CO(g)  +  \cancel{O_{2}(g)}]          1/2 [ΔH° = 566.0 kJ] = 283.0 kJ

\underline{1/2  [2  H_{2}O(g)  →   2  H_{2}(g)  +  \cancel{O_{2}(g)}                      1/2 [ΔH° = 483.6  kJ] = 241.8  kJ}

C(s)  +  H_{2}O(g)  →  CO(g)  +  H_{2}(g)                       ΔH° = 131.3 kJ

The water-gas reaction is endothermic by 131.3 kJ.

Related Answered Questions