Question 10.3: Using Karman’s relation l = X [du/dy / d²u/dy²], show that t...

Using Karman’s relation l=\chi\left|\frac{ d \bar{u} / d y}{ d ^{2} \bar{u} / d y^{2}}\right|, show that the universal velocity distribution in a fully developed channel flow (Fig. 10.11) is given by

\frac{U_{\max }-\bar{u}}{u_{\tau}}=-\frac{1}{\chi}\left[\ln \left(1-\sqrt{\frac{y}{h}}\right)+\sqrt{\frac{y}{h}}\right]

where, 2h is the height of the channel, y is the distance measured from the centre line of the channel and χ is an empirical constant. The pressure gradient in flow direction is – (dp/dx).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Reynolds equation, we get

 

\frac{\partial\left(\tau_{t}\right)}{\partial y}=\frac{\partial \bar{p}}{\partial x}

 

or \tau_{t}=\left(\frac{\partial \bar{p}}{\partial x}\right) y+C_{1}

 

At y = 0, \tau_{t}=0, \text { that makes } C_{1} = 0

 

Thus, \tau_{t}=\left(\frac{\partial \bar{p}}{\partial x}\right) y

 

and \tau_{w}=\left(\frac{\partial \bar{p}}{\partial x}\right) h

 

we get \frac{\tau_{t}}{\tau_{w}}=\frac{y}{h}

 

From Karman’s relation, we can write

 

\tau_{t}=\frac{\rho \chi^{2}(\partial \bar{u} / \partial y)^{4}}{\left(\partial^{2} \bar{u} / \partial y^{2}\right)^{2}}

 

Then \tau_{w}=\frac{h \rho \chi^{2}(\partial \bar{u} / \partial y)^{4}}{y\left(\partial^{2} \bar{u} / \partial y^{2}\right)^{2}}

 

and \tau_{w}=\left(\frac{\partial \bar{p}}{\partial x}\right) h

 

we get \frac{\tau_{t}}{\tau_{w}}=\frac{y}{h}

 

From Karman’s relation, we can write

 

\tau_{t}=\frac{\rho \chi^{2}(\partial \bar{u} / \partial y)^{4}}{\left(\partial^{2} \bar{u} / \partial y^{2}\right)^{2}}

 

Then \tau_{w}=\frac{h \rho \chi^{2}(\partial \bar{u} / \partial y)^{4}}{y\left(\partial^{2} \bar{u} / \partial y^{2}\right)^{2}}

 

u_{\tau}^{2}=\frac{h \chi^{2}(\partial \bar{u} / \partial y)^{4}}{y\left(\partial^{2} \bar{u} / \partial y^{2}\right)^{2}}

 

Thus, \frac{\partial^{2} \bar{u}}{\partial y^{2}}=\pm \frac{\chi}{u_{\tau}} \sqrt{\frac{h}{y}}\left(\left|\frac{\partial \bar{u}}{\partial y}\right|\right)^{2}

 

Substituting for m=\frac{\partial \bar{u}}{\partial y} and integrating,

 

-\frac{1}{m}=\pm 2 \frac{\chi}{u_{\tau}} \sqrt{h y}+C_{2}

 

\text { at } y=h, m \rightarrow \infty \text { and } C_{2}=\pm 2 \frac{\chi}{u_{\tau}} h

 

Now, we know that \frac{\partial \bar{u}}{\partial y} \leq 0 \text { for } y>0 and we write

 

d \bar{u}=-\frac{u_{\tau}}{2 \chi h} \int \frac{ d y}{1-\sqrt{y / h}}

 

Substituting for \xi=1-\sqrt{\frac{y}{h}} and integrating,

 

\bar{u}=\frac{u_{\tau}}{\chi}[\ln \xi-\xi]+C_{3}

 

or \bar{u}=\frac{u_{\tau}}{\chi}\left[\ln \left(1-\sqrt{\frac{y}{h}}\right)-\left(1-\sqrt{\frac{y}{h}}\right)\right]+C_{3}

 

\text { at } y=0, \bar{u}=U_{\max }

 

C_{3}=U_{\max }+\frac{u_{\tau}}{\chi}

 

Finally, \frac{U_{\max }-\bar{u}}{u_{\tau}}=\frac{1}{\chi}\left[\ln \left(1-\sqrt{\frac{y}{h}}\right)-\sqrt{\frac{y}{h}}\right]

Related Answered Questions