Question 2.8.2: Using Operations on Functions and Determining Domains Let ƒ(...

Using Operations on Functions and Determining Domains

Let ƒ(x) = 8x – 9 and g(x) = \sqrt{2x – 1}. Find each function in (a)–(d).

(a) (ƒ + g)(x)      (b) (ƒ – g)(x)       (c) (ƒg)(x)       (d) (\frac{ƒ}{g})(x)

(e) Give the domains of the functions in parts (a)–(d).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) (ƒ + g)(x)                                                      (b) (ƒ – g)(x)

= ƒ(x) + g(x)                                                 = ƒ(x) – g(x)

 = 8x – 9 + \sqrt{2x – 1}                                                          = 8x – 9 – \sqrt{2x – 1}

(c) (ƒg)(x)                                                        (d) (\frac{ƒ}{g})(x)

= ƒ(x) • g(x)                                                  =\frac{ƒ(x)}{g(x)}

 = (8x – 9)\sqrt{2x – 1}                                                                =  \frac{8x – 9}{\sqrt{2x – 1} }

(e) To find the domains of the functions in parts (a)–(d), we first find the domains of ƒ and g.

The domain of ƒ is the set of all real numbers (-∞, ∞).

Because g is defined by a square root radical, the radicand must be nonnegative (that is, greater than or equal to 0).

 g(x) = \sqrt{2x – 1}               Rule for g(x)

2x – 1 ≥ 0                        2x – 1 must be nonnegative.

 x ≥ \frac{1}{2}                             Add 1 and divide by 2.

Thus, the domain of g is [\frac{1}{2} , ∞).

The domains of ƒ + g, ƒ – g, and ƒg are the intersection of the domains of ƒ and g, which is

\begin{matrix}(-∞, ∞) ∩ [\frac{1}{2} , ∞) = [\frac{1}{2} , ∞). & \text{The intersection of two sets}\\ & \text{is the set of all elements} \\ & \text{common to both sets.} \end{matrix}

The domain of \frac{ƒ}{ g} includes those real numbers in the intersection above for which g(x) = \sqrt{2x – 1}≠ 0—that is, the domain of \frac{ƒ}{ g}  \text{is}  (\frac{1}{2}, ∞).

Related Answered Questions

Question: 2.5.8

Verified Answer:

We write an equivalent equation with 0 on one side...
Question: 2.8.9

Verified Answer:

Note the repeated quantity x² - 5. If we choose g(...