Question 2.8.1: Using Operations on Functions Let ƒ(x) = x² + 1 and g(x) = 3...

Using Operations on Functions

Let ƒ(x) = x² + 1 and g(x) = 3x + 5. Find each of the following.

(a) (ƒ + g)(1)  (b) (ƒ – g)(-3)       (c) (ƒg)(5)       (d) ( \frac{ƒ}{g})(0)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) First determine ƒ(1) = 2 and g(1) = 8. Then use the definition.

(ƒ + g)(1)

= ƒ(1) + g(1)              (ƒ + g)(x) = ƒ(x)+ g(x)

= 2 + 8                       ƒ(1) = 1² + 1; g(1) = 3(1) + 5

= 10                           Add.

(b) (ƒ – g)(-3)

= ƒ(-3) – g(-3)                (ƒ – g)(x) = ƒ(x) – g(x)

= 10 – (-4)                       ƒ(-3) = (-3)² + 1; g(-3) = 3(-3) + 5

= 14                                Subtract.

(c) (ƒg)(5)

= ƒ(5) • g(5)                  (ƒg)(x) = ƒ(x) • g(x)

= (5²+ 1)(3 • 5 + 5)     ƒ(x) = x² + 1; g(x) = 3x + 5

= 26 • 20                       ƒ(5) = 26; g(5) = 20

= 520                              Multiply.

(d) (\frac{ƒ}{g})(0)

= \frac{ƒ(0) }{g(0)}                       (\frac{ƒ}{g})(x) = ƒ\frac{(x) }{g(x)}

= \frac{0² + 1}{3(0) + 5}                   ƒ(x) = x² + 1

g(x) = 3x + 5

= \frac{1}{5}                           Simplify.

Related Answered Questions

Question: 2.5.8

Verified Answer:

We write an equivalent equation with 0 on one side...
Question: 2.8.9

Verified Answer:

Note the repeated quantity x² - 5. If we choose g(...