Question 8.5: Using Riemann sums, evaluate ∫0^1 (x − x²) dx.
Using Riemann sums, evaluate \int_{0}^{1} {\left(x − x^{2}\right)} dx.
Learn more on how we answer questions.
Since the function f (x) = x − x^{2} is continuous, it is integrable. Let P_{n} = \left\{x_{0}, x_{1}, x_{2}, …, x_{n} \right\} be the uniform partition of [0, 1], in which case
x_{i} = \frac{i}{n}, i = 0, 1, . . . .n.
Choosing the mark α_{n} = (x_{0}, x_{1}, …, x_{n−1}) ,we obtain
S (f, P_{n}, α_{n}) = \sum\limits_{i=0}^{n−1}{\left(\frac{i}{n} − \frac{i^{2}}{n^{2}}\right)} \frac{1}{n}
= \frac{1}{n^{2}} \sum\limits_{i=0}^{n−1}{i} − \frac{1}{n^{3}} \sum\limits_{i=0}^{n−1}{i^{2}}
= \frac{1}{n^{2}} \frac{n (n − 1)}{2} − \frac{1}{n^{3}} \frac{(n − 1) n (2n − 1)}{6},
and since \left\|P_{n}\right\| = 1/n → 0, we have
\int_{0}^{1} {\left(x − x^{2}\right)} dx = \underset{n→∞}{\lim} S (f, P_{n}, α_{n})
= \frac{1}{2} − \frac{1}{3} = \frac{1}{6}.