Question 13.3: Using the P1 approximation, derive relations for the tempera...

Using the P_1 approximation, derive relations for the temperature distribution and energy transfer between parallel plane walls at  T_{w1} and T_{w2} for the limit of radiative equilibrium without internal heat sources. Each wall has the same diffuse-gray emissivity \epsilon _w , and they are separated by an emitting, absorbing, and isotropically scattering medium with albedo ω and optical thickness \tau _D based on the spacing between the walls.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Because the geometry requires the radiative energy flux to be only in the  \tau _1 direction, it follows that the first moments (equal to the fluxes) i^{(1)}=0 for j = 2, 3. Then Equation 13.31 for the P_1

I(S,\theta ,\phi ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta +3I^{(2)}\sin \theta \cos \phi +3I^{(3)}\sin \theta \sin \phi ]                    (13.31)

I(S,\theta ,\phi ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta ]                    (13.42)

and the moment Equations 13.33 and 13.34 used for the P_1 approximation become

\sum\limits_{i=1}^{3}{\frac{\partial I^{(i)}}{\partial \tau _i} } =(1-\omega )(4\pi I_b-I^{(0)})                     (13.33)

\sum\limits_{i=1}^{3}{\frac{\partial I^{(ij)}}{\partial \tau _i} } =-I^{(j)}             (3 equations: j=1,2,3)            (13.34)

\frac{dI^{(1)}}{d\tau _1}  =(1-\omega )(4\pi I_b-I^{(0)})                     (13.43)

\frac{d I^{(11)}}{d\tau _1} =-I^{(1)};     \frac{d I^{(12)}}{d\tau _1} =0;  \frac{d I^{(13)}}{d\tau _1} =0;                          (13.44)

The closure condition for P_1, Equation 13.38,

I^{(ij)} =\frac{1}{3}\delta _{ij}I^{(0)}

gives I^{(11)} =(1/3)I^{(0)} and I^{(12)} =I^{(13)}=0. Substituting into the second-moment differential equations (13.44) gives

\frac{1}{3}\frac{dI^{(0)}}{dk_1}=-I^{(1)}                  (13.45)

Now, because I^{(1)} = q_r , and q_r is constant in this geometry for radiative equilibrium with \dot{q}=0  , it follows from Equation 13.43 that I^{(0)}=4\pi I_b=4\sigma T^4(\tau _1) . Substituting this into Equation 13.45 gives

q_r=-\frac{4\sigma }{3} \frac{dT^4}{dk_1}            (13.46)

This is the same relation as for the diffusion solution Equation 12.30.

q(x) =-\frac{4\sigma }{3\beta (x)} \frac{d(T^4)}{dx}d\lambda =-\frac{16}{3\beta (x)} \sigma T^3\frac{dT}{dx}              (12.30)

However, for other geometries the P_1 solution does not generally provide the diffusion result. Integrating Equation 12.46 results in a linear T^4 distribution in the medium

\frac{\partial^2 E_b(r)}{\partial x^2}=-\frac{3\beta Q_1}{16\pi } \frac{(x^2+y^2+z^2)^{3/2}-3x^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3}                        (12.46)

\sigma T^4(\tau _1)=-\frac{3q_r}{4}\tau _1+C             (12.47)

The boundary conditions are applied to relate the temperature distribution to the known temperatures and obtain the integration constant C. Measuring \tau_1     from the wall at T_{w1}, Equation 13.40 at this boundary becomes [using Equation 13.41 and Y_1^0 = (3/4π)^{1/2} cosθ]

\int_{\Omega =0}^{2\pi }{I_0(\Omega )} Y_l^m(\Omega ) d\Omega =\int_{0}^{2\pi }{\left[\epsilon (\Omega )I_{b,w}+\frac{1}{\pi }\int_{\Omega _i=0}^{2\pi }{\rho (\Omega ,\Omega _i)I(\Omega _i)l_id\Omega _i}  \right]d\Omega  }                         (13.40)

\int_{\Omega =0}^{2\pi }{I_0(\Omega )} Y_l^m(\Omega ) d\Omega =\int_{\Omega =0}^{2\pi }{I_0(\Omega ) l_i^{2n-1}d\Omega } =  \int_{\Omega =0}^{2\pi }{I_0(\Omega )l_id\Omega }=j                (13.41)

J(\tau _1=0)=2\pi \int_{\theta =0}^{\pi /2}{I_0} (\tau _1=0)\cos \theta \sin \theta d\theta =2\epsilon _w\sigma T^4_{w,1}\int_{\theta =0}^{\pi /2}{\cos \theta \sin \theta d\theta }+2(1-\epsilon _w)\int_{0}^{\pi /2}{\left[2\pi \int_{0}^{\pi /2}{I(\tau _1=0,\theta _i)}\cos \theta _i\sin \theta _id\theta _i \right] }\cos \theta \sin \theta d\theta            (13.48)

The incident intensity I(τ_1 = 0, θ)   in Equation 13.48 is expressed by Equation 13.42, so that, from the moments that have been found,

I(\tau _1=0,\theta_i ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta_i ]= \frac{1}{4\pi }[4\sigma T^4(\tau _1=0)+3q_r\cos \theta_i ]

Substituting into the boundary condition, Equation 13.48 gives for the diffuse boundary

J(\tau _1=0)=\epsilon _wT^4_{w1}+\frac{(1-\epsilon _w)}{2}\int_{\theta _i=\pi }^{\pi /2}{[4\sigma T^4(\tau _1=0)+3q_r\cos \theta _i]}\cos \theta _i\sin \theta _id\theta _i                         (13.49)

From the net radiation expression Equation 5.17 at wall 1 (Note: q_r = J – G = q_1)

J_k=\sigma T^4_k-\frac{1-\epsilon _k}{\epsilon _k}q_k   or \sigma T^4_k=\frac{1-\epsilon _k}{\epsilon _k}q_k +J_k                      (5.17a,b)

J(\tau _1=0)=\sigma T^4_{w1}-\frac{\left(1-\epsilon _w\right) }{\epsilon _w}q_r                  (13.50)

Integrating Equation 13.49 and using Equation 13.50 to eliminate J results in

\sigma T^4(\tau _1=0)=\sigma T^4_{w1}-\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2}  \right\rgroup q_r          (13.51)

A similar analysis applied at wall 2 gives

\sigma T^4(\tau _1=\tau _D)=\sigma T^4_{w2}+\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2}  \right\rgroup q_r                         (13.52)

Equations 13.51 and 13.52 are the same as the diffusion solution Equation 12.41. Equation 13.51 is used to evaluate the constant in Equation 13.47 where \sigma T^4(\tau _1=0)=C , resulting in

\sigma T^4(\tau _1)=\sigma T^4_{w1}-\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2}  \right\rgroup q_r – \frac{3q_r}{4} \tau _1      (13.53)

Evaluating Equation 13.53 at τ_1 = τ_D, substituting in Equation 13.52 to eliminate T^4(τ_1 = τ_d), and solving the result for q_r yields

\frac{q_r}{\sigma (T^4_{w1}-T^4_{w2})}=\frac{1}{3\tau _D/4+2/\epsilon _w-1}                  (13.54)

This expression for q_r can be substituted into Equation 13.53 to obtain T^4(τ_1) in terms of the known boundary conditions (see Table 13.2). This completes the solution.

  TABLE 13.2
P_1 Approximations for Energy Transfer and Temperature Distribution for a Gray Translucent Medium in Radiative Equilibrium (Absorption, Emission, Isotropic Scattering) between Gray Surfaces; \dot{q}=0
Geometry Relationsª
Infinite parallel plates \psi =\frac{1}{(3\beta D/4)+E_1+E_2+1}       \phi (z)  =\psi \left[\frac{3\beta }{4}(D-z)+E_2+\frac{1}{2}  \right] 
Infinitely long concentric cylinders \psi =\frac{1}{\frac{3}{8} \beta D_1\ln \left\lgroup\frac{D_2}{D_1} \right\rgroup+\left\lgroup E_1+\frac{1}{2} \right\rgroup+\frac{D_1}{D_2}\left\lgroup   E_2+\frac{1}{2}\right\rgroup    }         \phi (r)=\psi\left[-\frac{3}{8}\beta D_1\ln \left\lgroup\frac{D}{D_2}\right\rgroup +\left\lgroup E_2+\frac{1}{2} \right\rgroup \frac{D_1}{D_2}   \right]   
Concentric spheres \psi =\frac{1}{\frac{3}{8} \beta D_1 \left\lgroup 1-\frac{D_1}{D_2} \right\rgroup+\left\lgroup E_1+\frac{1}{2} \right\rgroup+\frac{D_2}{D_1}\left\lgroup   E_2+\frac{1}{2}\right\rgroup    }         \phi (r)=\psi\left[-\frac{3}{8}\beta D_1 \left\lgroup\frac{D1}{D_2} -\frac{D_1}{D} \right\rgroup +\left\lgroup E_2+\frac{1}{2} \right\rgroup \frac{D^2_1}{D^2_2}   \right]   
ªDefinitions: E_N=(1-\epsilon _{wN})/\epsilon _{wN},\psi =Q_1/A_1\sigma (T^4_{w1}-T^4_{w2}),\phi (\xi )=[T^4(\xi )-T^4_{w2}]/(T^4_{w1}-T^4_{w2}) ,D=2r,\beta =k+\sigma and for \phi (r) the κ > 0.

Related Answered Questions