Question 13.3: Using the P1 approximation, derive relations for the tempera...
Using the P_1 approximation, derive relations for the temperature distribution and energy transfer between parallel plane walls at T_{w1} and T_{w2} for the limit of radiative equilibrium without internal heat sources. Each wall has the same diffuse-gray emissivity \epsilon _w , and they are separated by an emitting, absorbing, and isotropically scattering medium with albedo ω and optical thickness \tau _D based on the spacing between the walls.
Learn more on how we answer questions.
Because the geometry requires the radiative energy flux to be only in the \tau _1 direction, it follows that the first moments (equal to the fluxes) i^{(1)}=0 for j = 2, 3. Then Equation 13.31 for the P_1
I(S,\theta ,\phi ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta +3I^{(2)}\sin \theta \cos \phi +3I^{(3)}\sin \theta \sin \phi ] (13.31)
I(S,\theta ,\phi ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta ] (13.42)
and the moment Equations 13.33 and 13.34 used for the P_1 approximation become
\sum\limits_{i=1}^{3}{\frac{\partial I^{(i)}}{\partial \tau _i} } =(1-\omega )(4\pi I_b-I^{(0)}) (13.33)
\sum\limits_{i=1}^{3}{\frac{\partial I^{(ij)}}{\partial \tau _i} } =-I^{(j)} (3 equations: j=1,2,3) (13.34)
\frac{dI^{(1)}}{d\tau _1} =(1-\omega )(4\pi I_b-I^{(0)}) (13.43)
\frac{d I^{(11)}}{d\tau _1} =-I^{(1)}; \frac{d I^{(12)}}{d\tau _1} =0; \frac{d I^{(13)}}{d\tau _1} =0; (13.44)
The closure condition for P_1, Equation 13.38,
I^{(ij)} =\frac{1}{3}\delta _{ij}I^{(0)}gives I^{(11)} =(1/3)I^{(0)} and I^{(12)} =I^{(13)}=0. Substituting into the second-moment differential equations (13.44) gives
\frac{1}{3}\frac{dI^{(0)}}{dk_1}=-I^{(1)} (13.45)
Now, because I^{(1)} = q_r , and q_r is constant in this geometry for radiative equilibrium with \dot{q}=0 , it follows from Equation 13.43 that I^{(0)}=4\pi I_b=4\sigma T^4(\tau _1) . Substituting this into Equation 13.45 gives
q_r=-\frac{4\sigma }{3} \frac{dT^4}{dk_1} (13.46)
This is the same relation as for the diffusion solution Equation 12.30.
q(x) =-\frac{4\sigma }{3\beta (x)} \frac{d(T^4)}{dx}d\lambda =-\frac{16}{3\beta (x)} \sigma T^3\frac{dT}{dx} (12.30)
However, for other geometries the P_1 solution does not generally provide the diffusion result. Integrating Equation 12.46 results in a linear T^4 distribution in the medium
\frac{\partial^2 E_b(r)}{\partial x^2}=-\frac{3\beta Q_1}{16\pi } \frac{(x^2+y^2+z^2)^{3/2}-3x^2(x^2+y^2+z^2)^{1/2}}{(x^2+y^2+z^2)^3} (12.46)
\sigma T^4(\tau _1)=-\frac{3q_r}{4}\tau _1+C (12.47)
The boundary conditions are applied to relate the temperature distribution to the known temperatures and obtain the integration constant C. Measuring \tau_1 from the wall at T_{w1}, Equation 13.40 at this boundary becomes [using Equation 13.41 and Y_1^0 = (3/4π)^{1/2} cosθ]
\int_{\Omega =0}^{2\pi }{I_0(\Omega )} Y_l^m(\Omega ) d\Omega =\int_{0}^{2\pi }{\left[\epsilon (\Omega )I_{b,w}+\frac{1}{\pi }\int_{\Omega _i=0}^{2\pi }{\rho (\Omega ,\Omega _i)I(\Omega _i)l_id\Omega _i} \right]d\Omega } (13.40)
\int_{\Omega =0}^{2\pi }{I_0(\Omega )} Y_l^m(\Omega ) d\Omega =\int_{\Omega =0}^{2\pi }{I_0(\Omega ) l_i^{2n-1}d\Omega } = \int_{\Omega =0}^{2\pi }{I_0(\Omega )l_id\Omega }=j (13.41)
J(\tau _1=0)=2\pi \int_{\theta =0}^{\pi /2}{I_0} (\tau _1=0)\cos \theta \sin \theta d\theta =2\epsilon _w\sigma T^4_{w,1}\int_{\theta =0}^{\pi /2}{\cos \theta \sin \theta d\theta }+2(1-\epsilon _w)\int_{0}^{\pi /2}{\left[2\pi \int_{0}^{\pi /2}{I(\tau _1=0,\theta _i)}\cos \theta _i\sin \theta _id\theta _i \right] }\cos \theta \sin \theta d\theta (13.48)
The incident intensity I(τ_1 = 0, θ) in Equation 13.48 is expressed by Equation 13.42, so that, from the moments that have been found,
I(\tau _1=0,\theta_i ) =\frac{1}{4\pi }[I^{(0)}+3I^{(1)}\cos \theta_i ]= \frac{1}{4\pi }[4\sigma T^4(\tau _1=0)+3q_r\cos \theta_i ]
Substituting into the boundary condition, Equation 13.48 gives for the diffuse boundary
J(\tau _1=0)=\epsilon _wT^4_{w1}+\frac{(1-\epsilon _w)}{2}\int_{\theta _i=\pi }^{\pi /2}{[4\sigma T^4(\tau _1=0)+3q_r\cos \theta _i]}\cos \theta _i\sin \theta _id\theta _i (13.49)
From the net radiation expression Equation 5.17 at wall 1 (Note: q_r = J – G = q_1)
J_k=\sigma T^4_k-\frac{1-\epsilon _k}{\epsilon _k}q_k or \sigma T^4_k=\frac{1-\epsilon _k}{\epsilon _k}q_k +J_k (5.17a,b)
J(\tau _1=0)=\sigma T^4_{w1}-\frac{\left(1-\epsilon _w\right) }{\epsilon _w}q_r (13.50)
Integrating Equation 13.49 and using Equation 13.50 to eliminate J results in
\sigma T^4(\tau _1=0)=\sigma T^4_{w1}-\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2} \right\rgroup q_r (13.51)
A similar analysis applied at wall 2 gives
\sigma T^4(\tau _1=\tau _D)=\sigma T^4_{w2}+\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2} \right\rgroup q_r (13.52)
Equations 13.51 and 13.52 are the same as the diffusion solution Equation 12.41. Equation 13.51 is used to evaluate the constant in Equation 13.47 where \sigma T^4(\tau _1=0)=C , resulting in
\sigma T^4(\tau _1)=\sigma T^4_{w1}-\left\lgroup\frac{1}{\epsilon _w}-\frac{1}{2} \right\rgroup q_r – \frac{3q_r}{4} \tau _1 (13.53)
Evaluating Equation 13.53 at τ_1 = τ_D, substituting in Equation 13.52 to eliminate T^4(τ_1 = τ_d), and solving the result for q_r yields
\frac{q_r}{\sigma (T^4_{w1}-T^4_{w2})}=\frac{1}{3\tau _D/4+2/\epsilon _w-1} (13.54)
This expression for q_r can be substituted into Equation 13.53 to obtain T^4(τ_1) in terms of the known boundary conditions (see Table 13.2). This completes the solution.
TABLE 13.2 P_1 Approximations for Energy Transfer and Temperature Distribution for a Gray Translucent Medium in Radiative Equilibrium (Absorption, Emission, Isotropic Scattering) between Gray Surfaces; \dot{q}=0 |
|
Geometry | Relationsª |
Infinite parallel plates | \psi =\frac{1}{(3\beta D/4)+E_1+E_2+1} \phi (z) =\psi \left[\frac{3\beta }{4}(D-z)+E_2+\frac{1}{2} \right] |
Infinitely long concentric cylinders | \psi =\frac{1}{\frac{3}{8} \beta D_1\ln \left\lgroup\frac{D_2}{D_1} \right\rgroup+\left\lgroup E_1+\frac{1}{2} \right\rgroup+\frac{D_1}{D_2}\left\lgroup E_2+\frac{1}{2}\right\rgroup } \phi (r)=\psi\left[-\frac{3}{8}\beta D_1\ln \left\lgroup\frac{D}{D_2}\right\rgroup +\left\lgroup E_2+\frac{1}{2} \right\rgroup \frac{D_1}{D_2} \right] |
Concentric spheres | \psi =\frac{1}{\frac{3}{8} \beta D_1 \left\lgroup 1-\frac{D_1}{D_2} \right\rgroup+\left\lgroup E_1+\frac{1}{2} \right\rgroup+\frac{D_2}{D_1}\left\lgroup E_2+\frac{1}{2}\right\rgroup } \phi (r)=\psi\left[-\frac{3}{8}\beta D_1 \left\lgroup\frac{D1}{D_2} -\frac{D_1}{D} \right\rgroup +\left\lgroup E_2+\frac{1}{2} \right\rgroup \frac{D^2_1}{D^2_2} \right] |
ªDefinitions: E_N=(1-\epsilon _{wN})/\epsilon _{wN},\psi =Q_1/A_1\sigma (T^4_{w1}-T^4_{w2}),\phi (\xi )=[T^4(\xi )-T^4_{w2}]/(T^4_{w1}-T^4_{w2}) ,D=2r,\beta =k+\sigma and for \phi (r) the κ > 0. |