Question 4.20: Using the results of Example 4-19, determine the unknown pot...

Using the results of Example 4-19, determine the unknown potential V_{4}. The values of the other three potentials are known.

4.20
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Example 4-19 we obtained the S-matrix of the first triangle

[S^{(1)}] =\frac{\varepsilon }{24} \left[\begin{matrix}25 & -9& -16 \\ -9 & 9& 0 \\ -16 & 0 & 16 \end{matrix} \right]

Following the same procedure, we obtain the S-matrix of the second triangle

[S^{(2)}] =\frac{\varepsilon }{24} \left[\begin{matrix}25 & -16& -9 \\ -16& 16& 0 \\ 9 & 0 & 9 \end{matrix} \right]

To directly apply (4.93) for this particular case, we have to change the indices as follows: (1, 2, 3, 4, 5, 6) → (3, 2, 1, 3, 4, 2). This produces the following coupled S-matrix of the rectangle-a system of two triangles ( 1, 2, 3) and (2, 3, 4 ):

[S] = \left[\begin{matrix}S_{1,1}^{(1)}& S_{1,2}^{(1)} & S_{1,3}^{(1)}&0 \\ S_{2,1}^{(1)} & S_{2,2}^{(1)}+ S_{5,5}^{(2)} & S_{2,3}^{(1)}+ S_{5,6}^{(2)}& S_{5,4}^{(2)} \\ S_{3,1}^{(1)} & S_{3,2}^{(1)}+S_{6,5}^{(2)} & S_{3,3}^{(1)} + S_{6,6}^{(2)}& S_{6,4}^{(2)}\\ 0 & S_{4,5}^{(2)} &S_{4,6}^{(2)}& S_{4,4}^{(2)} \end{matrix} \right]    (4.93)

  [S^{(e)}] =\left[\begin{matrix} [S]_{kk}& [S]_{ku} \\ [S]_{uk}& [S]_{uu} \end{matrix} \right] = \frac{\varepsilon }{24} \left[\begin{matrix}S_{33}^{(1)}+ S_{33}^{(2)} & S_{32}^{(1)}+ S_{32}^{(2)} & S_{31}^{(1)}& S_{34}^{(2)} \\ S_{23}^{(1)}+ S_{23}^{(2)} & S_{22}^{(1)}+ S_{22}^{(2)} & S_{21}^{(1)}& S_{24}^{(2)} \\ S_{13}^{(1)} & S_{12}^{(1)} & S_{11}^{(1)} &0\\ S_{43}^{(2)} & S_{42}^{(2)} &0& S_{44}^{(2)} \end{matrix} \right] \\= \frac{\varepsilon }{24} \left[\begin{matrix} 25& -9 & -16 &0 \\ -9 & 25 & 0& -16 \\ -16 & 0 & 25 & -9 \\ 0 & -16 & -9 & 25\end{matrix} \right]

Applying equation (4.97), we obtain the unknown potential V_{4}

[V]_{u} = -[S]_{u,u}^{-1}[S]_{u,k}[V]_{k}   (4.97)

V_{4} = -\frac{24}{25\varepsilon } \frac{\varepsilon }{24} [0  -16  -9]\left[\begin{matrix} 8 \\ 0 \\ 0 \end{matrix} \right] = 0  V

This computed potential is used to calculate the potential profile in this triangular element.

Related Answered Questions