Question 19.5: Using three VCVS sections in cascade, design a six-pole lowp...

Using three VCVS sections in cascade, design a six-pole lowpass Bessel filter having half-power frequency f_0=10 kHz and minimum input impedance (magnitude) greater than 100 k \Omega.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Table 19.1, the values of the scale factor λ for the three sections are  1.607 , 1.692, and 1.908. This means, for example, that for the first section f_{R C}=1.607 f_0 , where f_0 is the specified overall half-power frequency. Thus the  R C  products for the three sections are:

Table  19.1  Design parameters for VCVS filters:  N  is the number of poles and \lambda   is the scaling factor for Bessel and Chebyshev sections ^6
N Butterworth Bessel Chebyshev
k k λ k λ
2 0.586 0.268 -1.738 0.842 1.231
4 0.152 0.084 1.432 0.582 0.597
1.235 0.759 1.606 1.66 1.031
6 0.068 0.040 1.607 0.537 0.396
0.586 0.364 1.692 1.448 0.768
1.483 1.023 1.908 1.846 1.011
8 0.038 0.024 1.781 0.522 0.297
0.337 0.213 1.835 1.379 0.599
0.889 0.593 1.956 1.711 0.861
1.610 1.184 2.192 1.913 1.006

 \begin{aligned} (R C)_1 &=\frac{1}{2 \pi f_{R C 1}}=\frac{1}{2 \pi \lambda_1 f_0}=\frac{1}{2 \pi(1.607)(10 kHz )} \\\\ &=9.904 \mu s \\\\ (R C)_2 &=\frac{1}{2 \pi f_{R C 2}}=\frac{1}{2 \pi \lambda_2 f_0}=\frac{1}{2 \pi(1.692)(10 kHz )} \\\\ &=9.406 \mu s \\\\ (R C)_3 &=\frac{1}{2 \pi f_{R C 3}}=\frac{1}{2 \pi \lambda_3 f_0}=\frac{1}{2 \pi(1.908)(10 kHz )} \\\\ &=8.431 \mu s \end{aligned}

 We choose R=100 k \Omega for all sections, for which value the input impedance (of the first section) will meet or exceed the specification \left|Z_{\text {in }}\right| \geq 100 k \Omega. The required values for the capacitances are then

\begin{aligned} &C_1=\frac{R C_1}{R}=\frac{9.904 \mu s }{100 k \Omega}=99.04 pF \\\\ &C_2=\frac{R C_2}{R}=\frac{9.406 \mu s }{100 k \Omega}=94.06 pF \\\\ &C_3=\frac{R C_3}{R}=\frac{8.431 \mu s }{100 k \Omega}=84.31 pF \end{aligned}

{ }^6 Adapted from Table  5.2  in Horowitz and Hill (ibid).

19-16
19.4

Related Answered Questions