Question 19.5: Using three VCVS sections in cascade, design a six-pole lowp...
Using three VCVS sections in cascade, design a six-pole lowpass Bessel filter having half-power frequency f_0=10 kHz and minimum input impedance (magnitude) greater than 100 k \Omega.
Learn more on how we answer questions.
From Table 19.1, the values of the scale factor λ for the three sections are 1.607 , 1.692, and 1.908. This means, for example, that for the first section f_{R C}=1.607 f_0 , where f_0 is the specified overall half-power frequency. Thus the R C products for the three sections are:
Table 19.1 Design parameters for VCVS filters: N is the number of poles and \lambda is the scaling factor for Bessel and Chebyshev sections ^6 | ||||||
N | Butterworth | Bessel | Chebyshev | |||
k | k | λ | k | λ | ||
2 | 0.586 | 0.268 | -1.738 | 0.842 | 1.231 | |
4 | 0.152 | 0.084 | 1.432 | 0.582 | 0.597 | |
1.235 | 0.759 | 1.606 | 1.66 | 1.031 | ||
6 | 0.068 | 0.040 | 1.607 | 0.537 | 0.396 | |
0.586 | 0.364 | 1.692 | 1.448 | 0.768 | ||
1.483 | 1.023 | 1.908 | 1.846 | 1.011 | ||
8 | 0.038 | 0.024 | 1.781 | 0.522 | 0.297 | |
0.337 | 0.213 | 1.835 | 1.379 | 0.599 | ||
0.889 | 0.593 | 1.956 | 1.711 | 0.861 | ||
1.610 | 1.184 | 2.192 | 1.913 | 1.006 |
\begin{aligned} (R C)_1 &=\frac{1}{2 \pi f_{R C 1}}=\frac{1}{2 \pi \lambda_1 f_0}=\frac{1}{2 \pi(1.607)(10 kHz )} \\\\ &=9.904 \mu s \\\\ (R C)_2 &=\frac{1}{2 \pi f_{R C 2}}=\frac{1}{2 \pi \lambda_2 f_0}=\frac{1}{2 \pi(1.692)(10 kHz )} \\\\ &=9.406 \mu s \\\\ (R C)_3 &=\frac{1}{2 \pi f_{R C 3}}=\frac{1}{2 \pi \lambda_3 f_0}=\frac{1}{2 \pi(1.908)(10 kHz )} \\\\ &=8.431 \mu s \end{aligned}
We choose R=100 k \Omega for all sections, for which value the input impedance (of the first section) will meet or exceed the specification \left|Z_{\text {in }}\right| \geq 100 k \Omega. The required values for the capacitances are then
\begin{aligned} &C_1=\frac{R C_1}{R}=\frac{9.904 \mu s }{100 k \Omega}=99.04 pF \\\\ &C_2=\frac{R C_2}{R}=\frac{9.406 \mu s }{100 k \Omega}=94.06 pF \\\\ &C_3=\frac{R C_3}{R}=\frac{8.431 \mu s }{100 k \Omega}=84.31 pF \end{aligned}
{ }^6 Adapted from Table 5.2 in Horowitz and Hill (ibid).

