Question 6.4: Values of the second and third virial coefficients of nitrog...

Values of the second and third virial coefficients of nitrogen trifluoride are as follows:

B=-94.3  cm ^3 \cdot mol ^{-1} \text { and } C=6740  cm ^6 \cdot mol ^{-2} \text { at } 290  K

B=-87.1  cm ^3 \cdot mol ^{-1} \text { and } C=6430  cm ^6 \cdot mol ^{-2} \text { at } 300  K

B=-80.4  cm ^3 \cdot mol ^{-1} \text { and } C=6090  cm ^6 \cdot mol ^{-2} \text { at } 310  K

Calculate H^R  and  S^R   for nitrogen trifluoride at 300 K and 100 bar:

(a) Using expressions based upon the two-term virial equation.

(b) Using expressions based upon the three-term virial equation.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Here, we employ Eqs. (6.55) and (6.56) for H_R  and  S_R, respectively. These require the temperature derivative of the second virial coefficient. For this, we use the values at 290 K and 310 K:

\frac{H^R}{R T}=\frac{P}{R}\left(\frac{B}{T}-\frac{d B}{d T}\right)        (6.55)

\frac{S^R}{R}=-\frac{P}{R} \frac{d B}{d T}     (6.56)

\frac{d B}{d T} \approx \frac{-80.4+94.3}{20}=0.695  cm ^3 \cdot mol ^{-1} \cdot K ^{-1}

Using this value in Eq. (6.55) gives:

\frac{H^R}{R T}=\frac{P}{R}\left(\frac{B}{T}-\frac{d B}{d T}\right)=\frac{100}{83.14}\left(\frac{-87.1}{300}-0.695\right)=-1.19

from which H^R = −2960  J·mol^−1.

Similarly,

\frac{S^R}{R}=-\frac{P}{R} \frac{d B}{d T}=-\frac{100}{83.14}(0.695)=-0.836

from which S^R=-6.95  J \cdot mol ^{-1} \cdot K ^{-1}

(b) In this case we require the temperature derivatives of both B and C, along with the value of the density of NF_3 at 300 K and 100 bar. Solving the three-term virial coefficient iteratively as described in Ex. (3.8) gives V = 178.0  cm^3·mol^−1,  or  ρ = 0.00562  mol·cm^3. This corresponds to a compressibility factor of Z = 0.714. Applying the same approach as in part (a) for the temperature derivative of C:

\frac{d C}{d T} \approx \frac{6740-6090}{20}=32.5  cm ^6 \cdot mol ^{-2} \cdot K ^{-1}

With these values, Eqs. (6.62) and (6.63) give:

\frac{H^R}{R T}=T\left[\left(\frac{B}{T}-\frac{d B}{d T}\right) \rho+\left(\frac{C}{T}-\frac{1}{2} \frac{d C}{d T}\right) \rho^2\right]        (6.62)

\frac{S^R}{R}=\ln Z-T\left[\left(\frac{B}{T}+\frac{d B}{d T}\right) \rho+\frac{1}{2}\left(\frac{C}{T}+\frac{d C}{d T}\right) \rho^2\right]         (6.63)

\frac{H^R}{R T}=300\left[\left(\frac{-87.1}{300}-0.695\right) 0.00562+\left(\frac{6430}{300}-\frac{32.5}{2}\right) 0.00562^2\right]=-1.61

\frac{S^R}{R}=\ln (0.714)-300\left[\left(\frac{-87.1}{300}+0.695\right) 0.00562+\frac{1}{2}\left(\frac{6430}{300}+32.5\right) 0.00562^2\right]=-1.27

from which H^R=-4021  J \cdot mol ^{-1} \text { and } S^R=-10.60  J \cdot mol ^{-1} \cdot K ^{-1}

For comparison, values obtained from data in the NIST Chemistry WebBook are H^R=-3540  J \cdot mol ^{-1} \text { and } S^R=-8.83  J \cdot mol ^{-1} \cdot K ^{-1} . The expression based on the two-term virial equation underestimates these, while the expression based on the three-term virial equation overestimates them. Note that the conditions selected correspond to T_r = 1.28  and  P_r = 2.24. These are outside the range where we would expect the two-term virial expansion to work well, and it  ppears that adding a third term produces an overcorrection.

Related Answered Questions