Question 8.4: Water at 60°C flows between two large flat plates. The lower...

Water at 60°C flows between two large flat plates. The lower plate moves to the left at a speed of 0.3 m/s. The plate spacing is 3 mm and the flow is laminar. Determine the pressure gradient required to produce zero net flow at a cross section. ( \mu=4.7 \times 10^{-4} \mathrm{Ns} / m^{2}  at 60^{\circ} \mathrm{C} )

8 4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Governing equation: \mu \frac{\mathrm{d}^{2} u}{\mathrm{~d} y^{2}}=\frac{\mathrm{d} p}{\mathrm{~d} x}

 

u=\frac{1}{2 \mu} \frac{\mathrm{d} p}{\mathrm{~d} x} y^{2}+C_{1} y+C_{2} 

At y=0, u=-U, \quad C_{2}=-U 

At y=b, u=0 \text {, which yields }

0=\frac{1}{2 \mu} \frac{\mathrm{d} p}{\mathrm{~d} x} b^{2}+C_{1} b-U

Or              C_{1} =\frac{U}{b}-\frac{1}{2 \mu} \cdot \frac{\mathrm{d} p}{\mathrm{~d} x} b

 

u =\frac{1}{2 \mu} \frac{\mathrm{d} p}{\mathrm{~d} x}\left(y^{2}-b y\right)+U\left(\frac{y}{b}-1\right)

Now,          Q=\int_{0}^{b} u \mathrm{~d} y=\int_{0}^{b}\left[\frac{1}{2 \mu} \frac{\mathrm{d} p}{\mathrm{~d} x}\left(y^{2}-b y\right)+U\left(\frac{y}{b}-1\right)\right] \mathrm{d} y

Or             Q=-\frac{1}{12 \mu} \frac{\mathrm{d} p}{\mathrm{~d} x} b^{3}-\frac{U b}{2} a

For            Q=0, \text { with } \mu=4.7 \times 10^{-4} \mathrm{Ns} / \mathrm{m}^{2} 

\frac{\mathrm{d} p}{\mathrm{~d} x}=-\frac{6 U \mu}{b^{2}}=\frac{-6 \times 0.3 \times 4.7 \times 10^{-4}}{(0.003)^{2}}=-94.0 \mathrm{~N} / \mathrm{m}^{2} \cdot \mathrm{m}

Related Answered Questions