Question 10.9: What is the minimum required thickness of a welding neck fla...

What is the minimum required thickness of a welding neck flange as shown in Figure 10.15 with the following design data? (Note: These data are the same as those used for the blind flange in Example 10.8. In Figure 10.16 is a sample calculation for a welding neck flange.)

Design pressure P =2500 psi

Design temperature=250 °F

Bolt-up and gasket seating temperature=70 °F

Flange material is SA-105

Bolting material is SA-325 Grade 1

Gasket details are spiral-wound metal, fiber-filled, stainless steel; inside diameter is 13.75 in., and width is 1.0 in.

10 15
Structural Analysis and Design of Process Equipment
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Figure 10.15 Flange dimensions mentioned in Example 10.9.

1) Allowable bolt stress at design and seating temperatures= S_{b} =19,200 psi

2) Allowable flange stress at design and seating temperatures= S_{f} =17,500 psi

3) Gasket dimensions are as follows:

b_{0}=N / 2=0.5 in     and    b=0.5 \sqrt{b_{0}}=0.3535

G = 13.75 + (2 × 1) − (2 × 0.3535) = 15.043in.

4) Determine the bolt loadings and sizing of bolts with

N =1, b=0.3535, y=10,000, m =3.0:

H=\frac{\pi}{4} G^{2} P=\frac{\pi}{4}(15.043)^{2}(2500)=444,323

 

H_{ p }=2 b \pi G m P=2(0.3535)

π(15.043)(3.0)(2500) = 250,591

W_{ m 1}=H+H_{ p }=(444,323)+(250,591)

= 694,914

W_{ m 2} = πbGy = π(0.3535)(15.043)(10,000)

= 167,060

A_{ m }=\text { the greater of } W_{ m 1} / S_{ bh }=(694,914) /

(19,200) = 36.2 in.^{2}    or

W_{ m 2} / S_{ bc }=(167,060) /(19,200)=8.7 in ^{2}

A_{b} = actual bolt area = 36.8 in.^{2}

16 bolds at 2in.diameter

W_{ a }=0.5\left(A_{ m }+A_{ b }\right) S_{ bc }=0.5(36.2+36.8)

(19,200) = 700,800

W_{ b }=W_{ m 1}=694,914

5) Calculate the total flange moment for the design condition. Flange loads:

H_{ D }=\frac{\pi}{4} B^{2} p=\frac{\pi}{4}(10.75)^{2}(2500)=226,906

 

H_{ G }=H_{ p }=250,591

 

H_{ T }=H-H_{ D }=(444,322)-(226,906)

= 217,417.

Lever arms:

h_{ D }=R+0.5 g_{1} =(2.5)+0.5(3.375)=4.1875

h_{ G }=0.5(C-G) =0.5(22.5-15.043)=3.7285

h_{ T }=0.5\left(R+g_{1}+h_{ G }\right) =0.5(2.5+3.375+3.7285)

= 4.8018.

Flange moments:

M_{ D }=H_{ D } \times h_{ D } =(226,910)(4.1875)=950,170

M_{ G }=H_{ G } \times h_{ G } =(250,590)(3.7285)=934,330

M_{ T }=H_{ T } \times h_{ T } =(217,417)(4.8018)=1,043,990

M_{ de }=M_{ D }+M_{ G }+M_{ T } =2,928,490

6) Calculate the total flange moment for bolt-up condition. Flange load:

H_{ G }=W_{ a } =700,800

Lever arm:

h_{ G }=0.5(C-G) =3.7285

Flange moment:

M_{ bu }=H_{ G } \times h_{ G } =(700,800)(3.7285)=2,612,930 .

7) Use the greater of M_{de}  or  M_{bu}(S_{h}/S_{c});  M_{0}  =2,928,490.

8) Shape constants from the ASME Code, VIII-1, Appendix 2 : K =A/B=26.5/10.75=2.465. From Figure 2-7.1, Section VIII-1,

T = 1.35,     Z = 1.39,     Y = 2.29,      U = 2.51

g_{1} / g_{0} =3.375 / 1.0=3.375

h_{0}=\sqrt{B g_{0}}=\sqrt{(10.75)(1.0)} =3.279

h / h_{0} =6.25 / 3.279=1.906

From Figure 2-7.2, Section VIII-1, F =0.57.

From Figure 2-7.3, Section VIII-1, V =0.04.

From Figure 2-7.6, Section VIII-1, f =1.0

e=F / h_{0} =0.57 / 3.279=0.1738

d=\frac{U}{V} h_{0} g_{0}^{2}=\frac{2.51}{0.04}(3.279)(1)^{2} =205.76

9) Calculate the stresses. Assume a flange thickness t =4.5 in.

L=\frac{t e+1}{T}+\frac{t^{3}}{d}=1.320+0.443=1.763

Longitudinal hub stress:

S_{ H }=f M_{0} / L g_{1}^{2} B=(1)(2,928,490) /

 

\times(1.763)(3.375)^{2}(10.75)

 

S_{ H }=13,570 psi

Radial flange stress:

S_{ R }=\left(\frac{4}{3} t e+1\right) M_{0} / L t^{2} B

= (2.0428)(2,928,490) /(1.763)(4.5)^{2}(10.75)

= 15,590 psi.

Tangential flange stress:

S_{ T }=\frac{Y M_{0}}{t^{2} B}-Z S_{ R }

= \frac{(2.29)(2,928,490)}{(4.5)^{2}(10.75)}-(1.39)(15,590)

= 9140 psi.

10) Allowable stresses:

S_{ H } \leq 1.5 S_{ f } :                (1.5)(17,500)=26,250

>13,570  psi

S_{ R } \leq S_{ f } :                   17,500>15,590 psi

S_{ T } \leq S_{ f } :                   17,500>9140 psi

10 15

Related Answered Questions

Question: 10.4

Verified Answer:

The cylindrical-shell thickness t_{s}[/lat...