Question 10.9: What is the minimum required thickness of a welding neck fla...
What is the minimum required thickness of a welding neck flange as shown in Figure 10.15 with the following design data? (Note: These data are the same as those used for the blind flange in Example 10.8. In Figure 10.16 is a sample calculation for a welding neck flange.)
Design pressure P =2500 psi
Design temperature=250 °F
Bolt-up and gasket seating temperature=70 °F
Flange material is SA-105
Bolting material is SA-325 Grade 1
Gasket details are spiral-wound metal, fiber-filled, stainless steel; inside diameter is 13.75 in., and width is 1.0 in.


Learn more on how we answer questions.
Figure 10.15 Flange dimensions mentioned in Example 10.9.
1) Allowable bolt stress at design and seating temperatures= S_{b} =19,200 psi
2) Allowable flange stress at design and seating temperatures= S_{f} =17,500 psi
3) Gasket dimensions are as follows:
b_{0}=N / 2=0.5 in and b=0.5 \sqrt{b_{0}}=0.3535
G = 13.75 + (2 × 1) − (2 × 0.3535) = 15.043in.
4) Determine the bolt loadings and sizing of bolts with
N =1, b=0.3535, y=10,000, m =3.0:
H=\frac{\pi}{4} G^{2} P=\frac{\pi}{4}(15.043)^{2}(2500)=444,323H_{ p }=2 b \pi G m P=2(0.3535)
π(15.043)(3.0)(2500) = 250,591
W_{ m 1}=H+H_{ p }=(444,323)+(250,591)= 694,914
W_{ m 2} = πbGy = π(0.3535)(15.043)(10,000)
= 167,060
A_{ m }=\text { the greater of } W_{ m 1} / S_{ bh }=(694,914) /(19,200) = 36.2 in.^{2} or
W_{ m 2} / S_{ bc }=(167,060) /(19,200)=8.7 in ^{2}A_{b} = actual bolt area = 36.8 in.^{2}
16 bolds at 2in.diameter
W_{ a }=0.5\left(A_{ m }+A_{ b }\right) S_{ bc }=0.5(36.2+36.8)(19,200) = 700,800
W_{ b }=W_{ m 1}=694,9145) Calculate the total flange moment for the design condition. Flange loads:
H_{ D }=\frac{\pi}{4} B^{2} p=\frac{\pi}{4}(10.75)^{2}(2500)=226,906H_{ G }=H_{ p }=250,591
H_{ T }=H-H_{ D }=(444,322)-(226,906)
= 217,417.
Lever arms:
h_{ D }=R+0.5 g_{1} =(2.5)+0.5(3.375)=4.1875
h_{ G }=0.5(C-G) =0.5(22.5-15.043)=3.7285
h_{ T }=0.5\left(R+g_{1}+h_{ G }\right) =0.5(2.5+3.375+3.7285)
= 4.8018.
Flange moments:
M_{ D }=H_{ D } \times h_{ D } =(226,910)(4.1875)=950,170
M_{ G }=H_{ G } \times h_{ G } =(250,590)(3.7285)=934,330
M_{ T }=H_{ T } \times h_{ T } =(217,417)(4.8018)=1,043,990
M_{ de }=M_{ D }+M_{ G }+M_{ T } =2,928,490
6) Calculate the total flange moment for bolt-up condition. Flange load:
H_{ G }=W_{ a } =700,800
Lever arm:
h_{ G }=0.5(C-G) =3.7285
Flange moment:
M_{ bu }=H_{ G } \times h_{ G } =(700,800)(3.7285)=2,612,930 .
7) Use the greater of M_{de} or M_{bu}(S_{h}/S_{c}); M_{0} =2,928,490.
8) Shape constants from the ASME Code, VIII-1, Appendix 2 : K =A/B=26.5/10.75=2.465. From Figure 2-7.1, Section VIII-1,
T = 1.35, Z = 1.39, Y = 2.29, U = 2.51
g_{1} / g_{0} =3.375 / 1.0=3.375
h_{0}=\sqrt{B g_{0}}=\sqrt{(10.75)(1.0)} =3.279
h / h_{0} =6.25 / 3.279=1.906
From Figure 2-7.2, Section VIII-1, F =0.57.
From Figure 2-7.3, Section VIII-1, V =0.04.
From Figure 2-7.6, Section VIII-1, f =1.0
e=F / h_{0} =0.57 / 3.279=0.1738
d=\frac{U}{V} h_{0} g_{0}^{2}=\frac{2.51}{0.04}(3.279)(1)^{2} =205.76
9) Calculate the stresses. Assume a flange thickness t =4.5 in.
L=\frac{t e+1}{T}+\frac{t^{3}}{d}=1.320+0.443=1.763Longitudinal hub stress:
S_{ H }=f M_{0} / L g_{1}^{2} B=(1)(2,928,490) /\times(1.763)(3.375)^{2}(10.75)
S_{ H }=13,570 psi
Radial flange stress:
S_{ R }=\left(\frac{4}{3} t e+1\right) M_{0} / L t^{2} B= (2.0428)(2,928,490) /(1.763)(4.5)^{2}(10.75)
= 15,590 psi.
Tangential flange stress:
S_{ T }=\frac{Y M_{0}}{t^{2} B}-Z S_{ R }= \frac{(2.29)(2,928,490)}{(4.5)^{2}(10.75)}-(1.39)(15,590)
= 9140 psi.
10) Allowable stresses:
S_{ H } \leq 1.5 S_{ f } : (1.5)(17,500)=26,250
>13,570 psi
S_{ R } \leq S_{ f } : 17,500>15,590 psi
S_{ T } \leq S_{ f } : 17,500>9140 psi
