Question 10.45: What is the penetration theory for mass transfer across a ph...

What is the penetration theory for mass transfer across a phase boundary? Give details of the underlying assumptions. From the penetration theory, the mass transfer rate per unit area NAN_A is given in terms of the concentration difference ΔCAΔC_{A} between the interface and the bulk fluid, the molecular diffusivity D and the age t of the surface element by:

NA=DπtΔCAN_{A}=\sqrt{\frac{D}{\pi t} } \Delta C_{A} kmol/m² s (in SI units)

What is the mean rate of transfer if all elements of the surface are exposed for the same time tet_{e} before being remixed with the bulk?
Danckwerts assumed a random surface renewal process in which the probability of surface renewal is independent of its age. If s is the fraction of the total surface renewed per unit time, obtain the age distribution function for the surface and show that the mean mass transfer rate NAN_{A} over the whole surface is:

NA=DsΔCAN_{A}=\sqrt{Ds} \Delta C_{A} (kmol/m² s, in SI units)

In a particular application, it is found that the older surface is renewed more rapidly than the recently formed surface, and that after a time s1s^{-1}, the surface renewal rate doubles, that is it increases from s to 2s. Obtain the new age distribution function.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assuming the age spread of the surface ranges for t = 0, to t = ∞, consider the mass
transfer per unit area in each age group is t to t + dt and so on.
Then the mass transfer to surface in age group t to t + dt is:

=DπΔCAt1/2dt\sqrt{\frac{D}{\pi } } \Delta C_{A}t^{-1/2}dt

Thus the total mass transfer per unit area is:

DπΔCA0tet1/2dt=DπΔCA[t1/212]0te=2DπΔCAte1/2\sqrt{\frac{D}{\pi } } \Delta C_{A}\int_{0}^{t_{e}}t^{-1/2}dt= \sqrt{\frac{D}{\pi} } \Delta C_{A}\left[\frac{t^{1/2}}{\frac{1}{2} } \right] ^{t_{e}}_{0}=2\sqrt{\frac{D}{\pi } } \Delta C_{A}t_{e}^{1/2}

The average mass transfer rate is:

1te{2DπΔCAte1/2}=2DπteΔCA\frac{1}{t_{e}} \left\{2\sqrt{\frac{D}{\pi } }\Delta C_{A}t_{e}^{1/2} \right\} =2\sqrt{\frac{D}{\pi t_{e}} } \Delta C_{A}

In the steady state if f(t) is the age distraction function of the surface, then:
surface in age group t to t + dt = f(t) dt
and: surface in age group t – dt to t = f(t – dt) dt
Surface of age t – dt to t which is destroyed is that not entering the next age group
f(t – dt) dt – f(t) dt = s{f(t – dt) dt} dt

As dt → 0, then: -f′(t)dt dt = sf(t)dt dt

este^{st}f′(t) + estse^{st}sf(t) = 0

Integrating gives: este^{st}f(t) = K
then: f(t) = Keste^{-st} (i)

As the total surface = 1, K0estdt=K[ests]0=KsK \int_{0}^{\infty } e^{-st}dt=K\left[\frac{e^{-st}}{-s} \right] ^{\infty }_{0}=\frac{K}{s}        ∴   K=s

and: f(t) =sest se^{-st} (ii)

The mass transfer rate into the fraction of surface in the age group t – t dt is:

DπtΔCAsestdt\sqrt{\frac{D}{\pi t} } \Delta C_{A}se^{-st}dt

The mass transfer rate into the surface over the age span t = 0 to t = ∞ is:

=DπΔCAs0t1/2estdt=DπΔCA=\sqrt{\frac{D}{\pi } } \Delta C_{A}s\int_{0}^{\infty }t^{-1/2}e^{-st}dt=\sqrt{\frac{D}{\pi } } \Delta C_{A}

Putting = st = β² , then: t1/2=sβt^{-1/2} = \frac{\sqrt{s} }{\beta }

and: s dt = 2β dβ.

I=0sβeβ22βdβs=2s0eβ2dβ=2s.π2=πsI=\int_{0}^{\infty }\frac{\sqrt{s} }{\beta } e^{-\beta ^{2}}\frac{2\beta d\beta }{s} =\frac{2}{\sqrt{s} } \int_{0}^{\infty }e^{-\beta ^{2}}d\beta =\frac{2}{\sqrt{s} } .\frac{\sqrt{\pi } }{2} =\sqrt{\frac{\pi }{s} }

Thus the mass transfer rate per unit area for the surface as a whole is:

DπΔCAsπs=DsΔCA\sqrt{\frac{D}{\pi } } \Delta C_{A}s\sqrt{\frac{\pi }{s} } =\sqrt{Ds} \Delta C_{A}

With the new age distribution function:
0<t<1s,surface renewal rate/area = s        f(t)=Kest1s<t<,surface renewal rate/area = 2s      f(t)=Ke2st}\left. \begin{matrix} 0 <t<\frac{1}{s} , \text{surface renewal rate/area = s        f(t)} = Ke^{-st} \\ \frac{1}{s} <t< ∞ , \text{surface renewal rate/area = 2s      f(t)} = K′e^{-2st} \end{matrix} \right\}from equation (ii)

Fraction of surface of age 0 to1s=K01/sestdt=K[ests]01/s=Ks(1e1) \frac{1}{s} =K\int_{0}^{1/s}e^{-st}dt=K\left[\frac{e^{-st}}{-s} \right] ^{1/s }_{0}=\frac{K}{s} (1-e^{-1})

Fraction of surface of age1s \frac{1}{s} to =K1/se2stdt=K[e2st2s]1/s=K2se2\infty =K^{\prime}\int_{1/s}^{\infty }e^{-2st}dt=K^{\prime}\left[\frac{e^{-2st}}{-2s} \right] ^{\infty }_{1/s} =\frac{K^{\prime}}{2s} e^{-2}

The total surface is unity or: Ks(1e1)+K2se2\frac{K}{s} (1-e^{-1})+\frac{K^{\prime}}{2s} e^{-2}

At t = (1/s) , both age distribution functions must apply, and:

Ke1=Ke2Ke^{-1}=K^{\prime}e^{-2} or: K′ = K . e

Thus, for the total surface: 1 = Ks(1e1)+Ke2se2\frac{K}{s} (1-e^{-1})+\frac{Ke}{2s} e^{-2}

=Ks(1e1+12e1)=Ks(112e1)=\frac{K}{s} (1-e^{-1}+\frac{1}{2}e^{-1} )=\frac{K}{s} (1-\frac{1}{2} e^{-1})

Thus: K=s(112e1)1K=s(1-\frac{1}{2}e^{-1} )^{-1}  K′=se(112e1)1se(1-\frac{1}{2} e^{-1})^{-1}

Thus 0 <t<1s\frac{1}{s}  f(t)=s(112e1)1estf(t)=s(1-\frac{1}{2}e^{-1} )^{-1}e^{-st}

1s\frac{1}{s}<t<∞ f(t) = se(112e1)1e2st(1-\frac{1}{2}e^{-1} )^{-1}e^{-2st}==s(112e1)1e12st=s(1-\frac{1}{2}e^{-1} )^{-1}e^{1-2st}

Related Answered Questions