Question 13.7: What torque is needed to rotate an elliptic disk with the ha...

What torque is needed to rotate an elliptic disk with the half-axes a and b about the rotation axis 0A with constant angular velocity ω0ω_{0}? The rotation axis is tilted from the large half-axis a by the angle α.

13.14
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We choose the e1axise_{1}-axis orthogonal to the plane of the drawing, e2e_{2} along the small half-axis b, and e3e_{3} along the large half-axis. The principal moments of inertia are then (M=σπab,dM=σdF)(M = σπab, dM = σdF)

I2=σa+aφ(z)φ(z)z2 dz dy with    φ(z)=b1z2a2I_{2} = σ \int\limits_{−a}^{+a}{ \int\limits_{−\varphi(z)}^{\varphi(z)}{z^{2}  dz  dy}}   with         \varphi(z) = b \sqrt{1 − \frac{z^{2}}{a^{2}}}

 

from the ellipse equation z2/a2+y2/b2=1z^{2}/a^{2} +y^{2}/b^{2} = 1.

 

I2=σa+az2yb1z2/a2b1z2/a2dz=2σba+az21z2a2dzI_{2} = σ \int\limits_{−a}^{+a}{z^{2}y|^{b \sqrt{1−z^{2}/a^{2}}}_{−b\sqrt{1−z^{2}/a^{2}}}dz} = 2σb \int\limits_{−a}^{+a}{z^{2} \sqrt{1 − \frac{z^{2}}{a^{2}}} dz}

 

=2σba{z8(2z2a2)a2z2+a48arcsinza}a+a= 2σ \frac{b}{a} \left\{\frac{z}{8} (2z^{2} −a^{2})\sqrt{a^{2} −z^{2}} + \frac{a^{4}}{8}arcsin \frac{z}{|a|}\right\}|^{+a}_{-a}

 

=14σba3π=14Ma2;= \frac{1}{4} σba^{3}π = \frac{1}{4}Ma^{2};                                      (13.21)

accordingly,

I3=σb+bφ(y)φ(y)y2 dy dz        with        φ(y)=a1y2b2I_{3} = σ \int\limits_{−b}^{+b}{ \int\limits_{−\overline{\varphi}(y)}^{\overline{\varphi}(y)}{y^{2}  dy  dz}}         with         \overline{\varphi}(y) = a \sqrt{1 − \frac{y^{2}}{b^{2}}}

 

I3=14Mb2.⇒ I_{3} = \frac{1}{4} Mb^{2}.                                      (13.22)

We can immediately write down I1I_{1} (because I1=I2+I3I_{1} = I_{2} +I_{3} for thin plates):

I1=14M(a2+b2).I_{1} =\frac{1}{4}M(a^{2} + b^{2}).                                 (13.23)

For ω, we obtain

ω=0e1ω0 sin αe2+ω0 cos αe3.ω = 0 · e_{1} −ω_{0}  sin  α · e_{2} + ω_{0}   cos  α · e_{3}.

We insert into the Euler equations of the top:

D1=I1ω˙1+(I3I2)ω2ω3D_{1} = I_{1} \dot{ω}_{1} + (I_{3} − I_{2})ω_{2}ω_{3}

 

=14M(b2a2)sin α  cos αω02,=−\frac{1}{4} M(b^{2} −a^{2}) sin  α   cos  α · ω^{2}_{0},                                                    (13.24)

 

D2=I2ω˙2+(I1I3)ω1ω3=0,D_{2} = I_{2} \dot{ω}_{2} + (I_{1} − I_{3})ω_{1}ω_{3}=0,

 

D3=I3ω˙3+(I2I1)ω1ω2=0.D_{3} = I_{3} \dot{ω}_{3} + (I_{2} − I_{1})ω_{1}ω_{2}=0.

Thus, we obtain for the desired torque D

D=ω02M8(b2a2)sin 2αe1.D=−ω^{2}_{0}· \frac{M}{8} (b^{2} −a^{2}) sin  2α · e_{1}.                                               (13.25)

It is obvious that

(1) for α = 0,π/2,π, . . . , the torque vanishes, since the rotation is performed about a principal axis of inertia; and

(2) for b2=a2b^{2} = a^{2}, i.e., the case of a circular disk, the torque vanishes for all angles α.

We will consider once again the last conclusions: Given an elliptic disk with half-axes a and b, for α = 0°, 180°, or for α = 90°, 270°, the rotation axis coincides with one of the principal axes of inertia along the half-axes. In this case the orientation of the angular momentum is identical with the momentary rotation axis.  Because ω0ω_{0} = constant, we also have L = constant, and therefore the resulting torque vanishes. This also results by insertion into the Euler equations of the top: ω˙=(0,0,0),ω=(0,0,ω0) or ω=(0,ω0,0)\dot{ω}= (0, 0, 0), ω = (0, 0,ω_{0})   or   ω = (0,ω_{0}, 0)

D1=I1ω˙1+(I3I2)ω2ω3=0,⇒ D_{1} = I_{1}\dot{ω}_{1} + (I_{3} −I_{2})ω_{2}ω_{3} = 0,

 

D2=I2ω˙2+(I1I3)ω1ω3=0,D_{2} = I_{2}\dot{ω}_{2} + (I_{1} −I_{3})ω_{1}ω_{3} = 0,

 

D3=I3ω˙3+(I2I1)ω1ω2=0.D_{3} = I_{3}\dot{ω}_{3} + (I_{2} −I_{1})ω_{1}ω_{2} = 0.                                                                         (13.26)

Related Answered Questions

Question: 13.4

Verified Answer:

The principal moments of inertia of the rectangle ...