Question 4.3: When 0.972 g of cyclohexane undergoes complete combustion in...

When 0.972 g of cyclohexane undergoes complete combustion in a bomb calorimeter,\Delta T of the inner water bath is 2.98°C. For cyclohexane, \Delta U_{combustion} is –3913 kJ mol^{-1}. Given this result, what is the value for \Delta U_{combustion} for the combustion of benzene if \Delta T is 2.36°C when 0.857 g of benzene undergoes complete combustion in the same calorimeter? The mass of the water in the inner bath is 1.812 × 10^{3}g, and the C_{P,m } of water is 75.3 J K^{-1} mol^{-1}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To calculate the calorimeter constant through the combustion of cyclohexane, we write
Equation (4.21) in the following form:

\Delta U=\frac{m_{s}}{M_{s}}\Delta U_{combustion}+\frac{m_{H_{2}O}}{M_{H_{2}O}}× C_{P,m}\left( H_{2} O\right)× \Delta T + C_{calorimeter} × \Delta T=0         (4.21)

 

C_{calorimeter}=\frac{-\frac{m_{s}}{M_{s}}\Delta U_{combustion}-\frac{m_{H_{2}O}}{M_{H_{2}O}}C_{P,m}\left( H_{2}O \right)\Delta T}{\Delta T}

 

=\frac{\frac{0.972 g}{84.16  g  mol^{-1}}× 3913 × 10^{3} J  mol^{-1}-\frac{1.812 × 10^{3}g}{18.02 g  mol^{-1}}× 75.3  J  mol^{-1}K^{-1}× 2.98°C}{2.98°C}

 

=7.59 × 10^{3}J \left(°C \right)^{-1}

In calculating \Delta U_{combustion} for benzene, we use the value for  C_{calorimeter}:

\Delta U_{combustion}=-\frac{M_{s}}{m_{s}}\left( \frac{m_{_{H_{2}O}}}{M_{H_{2}O}}C_{P,m }\left( H_{2}o\right)\Delta T + C_{calorimeter}\Delta T \right)

 

=-\frac{78.12 g mol^{-1}}{0.857 g} × \left( ^{\frac{1.812 ×10^{3} g}{18.02  g  mol^{-1}}× 75.3  J  mol^{-1}K^{-1}× 2.36°C}_{+7.59 × 10^{3}  J  \left( °C \right)^{-1}× 2.36°C} \right)

 

=-3.26 × 10^{6}  J  mol^{-1}

 

Related Answered Questions