Question 6.2: When at rest in equilibrium, the mass receives an impulse J ...

When at rest in equilibrium, the mass receives an impulse J of magnitude 5 Ns applied at time, t = 0. Find the response for t > 0. Data: k = 500 N/m  c = 20 Ns/m m = 10 kg

6.47
6.48
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation of motion

   – 2kx  –  c\dot{x} = m\ddot{x}

or    m\ddot{x} + c\dot{x} + 2kx = 0

Note that the impulse J doesn’t appear on the free-body diagram or in the equation of motion since it doesn’t exist for t > 0.

From the coefficients in the equation of motion, we find that \omega _{n} = \sqrt{\frac{2k}{m} } =  rad/s and \gamma = \frac{c} {2\sqrt{2km} } = 0.1 . Since the damping ratio is less than 1.0 in this problem, we can identify

that it is a case of light damping. From equation (6.42), we can write the expression for the response as:

z(t) = e^{- \gamma \omega _{n}t}(B_{1} \cos \omega_{n} \sqrt{1  –  \gamma ^{2}}   t + B_{2} \sin \omega_{n} \sqrt{1  –  \gamma ^{2}}   t )                  (6.42)

x(t) = e^{- \gamma \omega _{n}t}(B_{1} \cos \Omega_{n} t + B_{2} \sin \Omega _{n} t)

where  \Omega _{n} = \omega _{n}\sqrt{1  –  \gamma ^{2}} = 9.9  rad/s

First initial condition:          x = 0    at    t = 0              ∴       B_{1} = 0

Hence,               x(t) = B_{2} e^{- \gamma \omega _{n}t} \sin \Omega _{n} t

The second initial condition is the velocity immediately after the impulse, \dot{x}_{0} . This can be found from the change in momentum caused by the impulse.

That is:        J = m (\dot{x}_{0}  –  0 )

Therefore,                \dot{x}_{0} = \frac{J}{m}

Differentiating the expression for displacement gives
  \dot{x} = B_{2} [\Omega_{n}e^{- \gamma \omega _{n}t} \cos \Omega _{n} t – \gamma \omega _{n} e^{- \gamma \omega _{n}t} \sin \Omega _{n} t]

 

\dot{x}_{0} = \frac{J}{m}    at     t = 0      ∴     \frac{J}{m} = B_{2}[\Omega _{n}  –  0]

Hence,        B_{2} = \frac{J}{m \Omega _{n}}           and        x(t) = \frac{J}{m \Omega _{n}} e^{- \gamma \omega _{n}t} \sin \Omega _{n} t

Substituting the numerical values gives       x(t) = 0.0505  e^{-t} \sin 9.9t      [m]

Related Answered Questions