Question 7.14: When silicon dioxide (sand) and carbon are heated, the produ...

When silicon dioxide (sand) and carbon are heated, the products are silicon carbide, SiC, and carbon monoxide. Silicon carbide is a ceramic material that tolerates extreme temperatures and is used as an abrasive and in the brake discs of cars. How many grams of CO are formed from 70.0 g of SiO_{2} and 50.0 g of C?

SiO_{2}(s) + 3C(s) \xrightarrow[]{\Delta } SiC(s) + 2CO(g)
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STEP 1   State the given and needed quantities (moles).

ANALYZE THE PROBLEM Given Need Connect
70.0 g of   SiO_{2}, 50.0 g of C grams of CO from limiting reactant molar masses, mole-mole factors
Equation
SiO_{2}(s) + 3C(s) \xrightarrow[]{\Delta } SiC(s) + 2CO(g)

STEP 2  Write a plan to convert the quantity (grams) of each reactant to quantity (grams) of product.

grams  of  SiO_{2}     \boxed{\begin{array}{l}\text{Molar}\\\text{Mass}\end{array}} →     moles  of  SiO_{2}     \boxed{\begin{array}{l}\text{Mole-mole}\\\text{factor}\end{array}} →      moles  of  CO     \boxed{\begin{array}{l}\text{Molar}\\\text{Mass}\end{array}} →      grams  of  CO

 

grams  of  C     \boxed{\begin{array}{l}\text{Molar}\\\text{Mass}\end{array}} →     moles  of  C     \boxed{\begin{array}{l}\text{Mole-mole}\\\text{factor}\end{array}} →      moles  of  CO     \boxed{\begin{array}{l}\text{Molar}\\\text{Mass}\end{array}} →      grams  of  CO

STEP 3  Use coefficients to write mole-mole factors.

\begin{array}{r c}\boxed{\begin{matrix} 1  mole  of  SiO_{2} = 60.09  g  of  SiO_{2} \\\frac{ 60.09  g  SiO_{2}}{1  mole  SiO_{2}} \text{ and } \frac{1  mole  SiO_{2}}{ 60.09  g  SiO_{2}} \end{matrix}} & \boxed{\begin{matrix}1  mole  of  C = 12.01  g  of  C\\ \frac{ 12.01  g  C}{ 1  mole  C}\text{ and }\frac{ 1   mole  C}{ 12.01  g  C} \end{matrix}} & \boxed{\begin{matrix}1  mole  of  CO = 28.01  g  of  CO\\ \frac{ 28.01  g  CO}{ 1  mole  CO}\text{ and }\frac{ 1  mole  CO}{ 28.01  g  C} \end{matrix}}\end{array}

 

\begin{array}{r c}\boxed{\begin{matrix} 2  moles  of  CO = 1  mole  of  SiO_{2} \\\frac{ 2  moles  CO}{1  mole SiO_{2}} \text{ and } \frac{1  mole  SiO_{2}}{ 2  moles  CO} \end{matrix}} & \boxed{\begin{matrix}2  moles   of  CO = 3  moles  of  C\\ \frac{ 2  moles  CO}{ 3  moles  C}\text{ and }\frac{ 3  moles  C}{ 2  moles  CO} \end{matrix}}\end{array}

STEP 4 Calculate the quantity (moles) of product from each reactant, and select the smaller quantity (moles) as the limiting reactant.
Grams of CO (product) from SiO_{2}:

\overset{Three  SFs}{\underset{Limiting  reactant }{70.0  \cancel{g  SiO_{2}}}}     \times    \overset{Exact}{\underset{Four  SFs}{\boxed{\frac{1  \cancel{mole  SiO_{2}}}{60.09  \cancel{  g  SiO_{2}}} }}}     \times    \overset{Exact}{\underset{Exact}{\boxed{\frac{2  \cancel{mole  CO}}{1  \cancel{  mole  SiO_{2}}} }}}     \times    \overset{Four  SFs}{\underset{Exact}{\boxed{\frac{28.01  g  CO}{1  \cancel{  mole  CO}} }}}   = \overset{Three  SFs}{\underset{\begin{array}{l} Smaller  amount\\ of  product \end{array} }{65.3  g  of  CO}}

Grams of CO (product) from C:

\overset{Three  SFs}{50.0  \cancel{g  C}}     \times    \overset{Exact}{\underset{Four  SFs}{\boxed{\frac{1  \cancel{mole  C}}{12.01  \cancel{  g  C}} }}}     \times    \overset{Exact}{\underset{Exact}{\boxed{\frac{2  \cancel{moles  CO}}{3  \cancel{  moles  CO}} }}}     \times    \overset{Four  SFs}{\underset{Exact}{\boxed{\frac{28.01  g  CO}{1  \cancel{  mole  CO}} }}}   = \overset{Three  SFs}{77.7  g  of  CO}

The smaller amount, 65.3 g of CO, is the most CO that can be produced. This also means that the SiO_{2} is the limiting reactant.

Related Answered Questions

Question: 7.10

Verified Answer:

STEP 1   State the given and needed quantities. ...
Question: 7.8

Verified Answer:

ANALYZE THE PROBLEM Given Need Connect formula o...
Question: 7.7

Verified Answer:

STEP 1   State the given and needed quantities. ...