Question 3.26: 1 kg of nitrogen is contained in a piston-cylinder device.Th...

1 kg of nitrogen is contained in a piston-cylinder device. The nitrogen is
isothermally compressed from P = 1 bar to P = 10 bar at T = 250 K. In questions A and B, find the initial volume, final volume, and work and heat added to, or removed from, the nitrogen.

A) Assume nitrogen behaves as an ideal gas.
B) Use Figure 2-3 as much as possible. If you need an equation of state, use the van der Waals equation, with a=1.37 \times 10^{6} \mathrm{bar} \cdot \mathrm{cm}^{6} / \mathrm{mol}^{2} and b=38.6 \mathrm{~cm}^{3} / \mathrm{mol}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) 

\begin{aligned}& \mathrm{V}_{\text {initial }}=\frac{\mathrm{nRT}_{\text {initial }}}{\mathrm{P}_{\text {initial }}}=\frac{(1 \mathrm{~kg})\left(\frac{\mathrm{mol}}{28.02 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(83.14 \frac{\mathrm{bar} \mathrm{~cm}^{3}}{\mathrm{~mol} \mathrm{~K}}\right) 250 \mathrm{~K}}{1 \mathrm{bar}} \\& =\bf 741,800 \mathrm{~cm}^{3} \\& \mathrm{~V}_{\text {final }}=\frac{\mathrm{nRT}_{\text {final }}}{\mathrm{P}_{\text {final }}}=\frac{(1 \mathrm{~kg})\left(\frac{\mathrm{mol}}{28.02 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(83.14 \frac{\mathrm{bar} \mathrm{~cm}^{3}}{\mathrm{~mol} \mathrm{~K}}\right) 250 \mathrm{~K}}{10 \mathrm{bar}}=\mathbf{7 4}, \mathbf{1 8 0} \mathbf{~c m}^{\mathbf{3}}\end{aligned} 

Set up an energy balance around the gas

\begin{aligned}\Delta\left\{M\left(\widehat {\rm U}+\frac{\rm v^2}{2}+\rm gh\right) \right\} \\& =\mathrm{m}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\mathrm{m}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\mathrm{W}_{\mathrm{EC}}+\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling Terms for this closed system:

\Delta \mathrm{M}(\widehat{\mathrm{U}})=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}

M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q

For an ideal gas:

\mathrm{d} \widehat{\mathrm{U}}=\mathrm{C}_{\mathrm{v}} \mathrm{dT}=0

Thus:

\begin{aligned}& \mathrm{W}_{\mathrm{EC}}=-\mathrm{Q}\\&\rm W_{EC}=-\int_{V=741,800 \mathrm{~cm}^{3}}^{V=74,180 \mathrm{~cm}^{3}} \mathrm{PdV}\\& \qquad\qquad\qquad=-\int_{V=741,800 \mathrm{~cm}^{3}}^{V=74,180 \mathrm{~cm}^{3}} \frac{\mathrm{NRT}}{\mathrm{V}} \mathrm{dV}\\& \qquad\qquad\qquad=(1 \mathrm{~kg})\left(\frac{\mathrm{mol}}{28.02 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}\right)\left(8.314 \frac{\mathrm{J}}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K}) \ln \frac{74180}{741800}\\& \qquad\qquad\qquad\bf=169.7 \mathrm{~kJ}\\& \bf Q=-\mathbf{1 6 9 . 7 ~ k J}\end{aligned}

B) Solve for V_{\text {initial }}

\begin{aligned}& \mathrm{P}=\frac{\mathrm{RT}}{\underline{\mathrm{V}}-\mathrm{b}}-\frac{\mathrm{a}}{\underline{\mathrm{V}}^{2}}\\& 1 \mathrm{bar}=\frac{\left(83.14 \frac{\mathrm{cm}^{3} \mathrm{bar}}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K})}{(\underline{\mathrm{V}})-\left(\frac{38.6 \mathrm{~cm}^{3}}{\mathrm{~mol}}\right)}-\frac{\left(1.37 \times 10^{6} \frac{\mathrm{cm}^{6} \mathrm{bar}}{\mathrm{mol}^{2}}\right)}{(\underline{\mathrm{V}})^{2}}\\& \underline{V}=20758 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\\& 1 \mathrm{~kg}\left(20758 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\right)\left(\frac{1 \mathrm{~mol}}{28.02 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)=\mathbf{7 4 0 ,828 }\mathbf{c m}^{3}\end{aligned}

Solve for V_{\text {final }}

\begin{aligned}& \mathrm{P}=\frac{\mathrm{RT}}{\underline{\mathrm{V}}-\mathrm{b}}-\frac{\mathrm{a}}{\underline{\mathrm{V}}^{2}}\\& 10 \mathrm{bar}=\frac{\left(83.14 \frac{\mathrm{cm}^{3} \mathrm{bar}}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K})}{(\underline{\mathrm{V}})-\left(\frac{38.6 \mathrm{~cm}^{3}}{\mathrm{~mol}}\right)}-\frac{\left(1.37 \times 10^{6} \frac{\mathrm{cm}^{6} \mathrm{bar}}{\mathrm{mol}^{2}}\right)}{(\underline{\mathrm{V}})^{2}}\\\\& \underline{\mathrm{V}}=2052 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\\& 1 \mathrm{~kg}\left(2052 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\right)\left(\frac{1 \mathrm{~mol}}{28.02 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{~g}}{\mathrm{~kg}}\right)=\bf 73,233 \mathbf{c m}^{3}\end{aligned}

Departure from ideal gas volume is more significant at the higher pressure.

Set up an energy balance around the gas

\begin{aligned}\Delta\left\{M\left(\widehat {\rm U}+\frac{\rm v^2}{2}+\rm gh\right) \right\} \\&=\mathrm{m}_{\mathrm{in}}\left(\widehat{\mathrm{H}}_{\mathrm{in}}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\mathrm{m}_{\mathrm{out}}\left(\widehat{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}+\mathrm{gh}_{\mathrm{out}}\right)+\mathrm{W}_{\mathrm{EC}}+\mathrm{W}_{\mathrm{S}}+\mathrm{Q}\end{aligned}

Cancelling Terms

\Delta \mathrm{M}(\widehat{\mathrm{U}})=\mathrm{W}_{\mathrm{EC}}+\mathrm{Q}

M\left(\widehat{U}_{\text {final }}-\widehat{U}_{\text {initial }}\right)=W_{E C}+Q

Since Figure 2-3 does not have Specific Internal Energies, we will find each Specific Enthalpy and convert based on calculated Volumes and known Pressures using the equation:

\widehat{H}-P \widehat{V}=\widehat{U}

Nitrogen at 1 bar and 250 \mathrm{~K} \rightarrow \widehat{\mathrm{H}}_{\text {initial }}=408 \frac{\mathrm{kJ}}{\mathrm{kg}}

Nitrogen at 10 bar and 250 \mathrm{~K} \rightarrow \widehat{\mathrm{H}}_{\text {final }}=402 \mathrm{~K} \frac{\mathrm{kJ}}{\mathrm{kg}}

\begin{aligned}& \widehat{U}_{\text {initial }}=\widehat{H}_{\text {initial }}-P_{\text {initial }} \times \widehat{V}_{\text {initial }} \\& \widehat{U}_{\text {initial }}=408 \frac{\mathrm{kJ}}{\mathrm{kg}}-1 \mathrm{bar} \times\left(\frac{740828 \mathrm{~cm}^{3}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~kJ}}{10000~ \mathrm{bar}~ \mathrm{cm}^{3}}\right)=333 \frac{\mathrm{kJ}}{\mathrm{kg}} \\& \widehat{U}_{\text {final }}=\widehat{H}_{\text {final }}-P_{\text {final }} \times \widehat{V}_{\text {final }} \\& \widehat{U}_{\text {final }}=402 \frac{\mathrm{kJ}}{\mathrm{kg}}-10~ \mathrm{bar} \times\left(\frac{73233 \mathrm{~cm}^{3}}{1 \mathrm{~kg}}\right)\left(\frac{1 \mathrm{~kJ}}{10000~ \mathrm{bar}~\textrm {cm} ^3}\right)=329 \frac{\mathrm{kJ}}{\mathrm{kg}}\end{aligned}

Solve for \mathrm{W}_{\mathrm{EC}}

\begin{aligned}& \frac{\mathrm{W}_{\mathrm{EC}}}{\mathrm{N}}=-\int_{\text {initial }}^{\text {final }} \mathrm{Pd} \underline{\mathrm{V}}\\& \frac{W_{\mathrm{EC}}}{\mathrm{N}}=-\int_{\text {initial }}^{\text {final }}\left(\frac{\mathrm{RT}}{\underline{\mathrm{V}}-\mathrm{b}}-\frac{\mathrm{a}}{\underline{\mathrm{V}}^{2}}\right) \mathrm{dV}\\& \frac{\mathrm{W}_{\mathrm{EC}}}{\mathrm{N}}=-\left(83.14 \frac{\mathrm{cm}^{3} \mathrm{bar}}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K})\left(\int_{\text {initial }}^{\text {final }}\left(\frac{1}{\underline{\mathrm{V}}-\mathrm{b}}\right) \mathrm{dV}\right)-\left(\mathrm{a} \int_{\text {initial }}^{\text {final }}\left(\frac{1}{\underline{V}^{2}}\right) \mathrm{dV}\right)\\& \frac{\mathrm{W}_{\mathrm{EC}}}{\mathrm{N}}=-\left(83.14 \frac{\mathrm{cm}^{3} \mathrm{bar}}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K})\left\{\ln \left(\frac{\mathrm{V}_{\text {final }}-\mathrm{b}}{\underline{V}_{\text {initial }}-\mathrm{b}}\right)-\mathrm{a}\left(\frac{1}{\underline{V}_{\text {initial }}}-\frac{1}{\underline{V}_{\text {final }}}\right)\right\}\\& \frac{\mathrm{W}_{\mathrm{EC}}}{\mathrm{N}}=-\left(83.14 \frac{\mathrm{cm}^{3} \text { bar }}{\mathrm{mol} \mathrm{K}}\right)(250 \mathrm{~K})\left\{\ln \left(\frac{2052 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}-\frac{38.6 \mathrm{~cm}^{3}}{\mathrm{~mol}}}{20758 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}-\frac{38.6 \mathrm{~cm}^{3}}{\mathrm{~mol}}}\right)-1.37\right.\\& \qquad\qquad \left.\times 10^{6} \frac{\mathrm{cm}^{6} \mathrm{bar}}{\mathrm{mol}^{2}}\left(\frac{1}{20758 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}}-\frac{1}{2052 \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}}\right)\right\}\\& \frac{\mathrm{W}_{\mathrm{EC}}}{\mathrm{N}}=49056 \frac{\mathrm{cm}^{3} \mathrm{bar}}{\mathrm{mol}}= \mathbf{4905. 6} \frac{\mathbf{J}}{\mathbf{mol}}\\& \mathrm{W}_{\mathrm{EC}}=\left(4905.6 \frac{\mathrm{J}}{\mathrm{mol}}\right)\left(\frac{1 \mathrm{~mol}}{28.02 \mathrm{~g}}\right)(1000 \mathrm{~g})=175,100 \mathrm{~J}=\mathbf{175.1} \bf{k J}\end{aligned}

Plug everything back into the energy balance

\begin{aligned}& 1 \mathrm{~kg}\left(329 \frac{\mathrm{kJ}}{\mathrm{kg}}-333 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)=175.1 \mathrm{~kJ}+\mathrm{Q}\\& Q=-179.1 \,\mathbf{k J}\end{aligned}

Related Answered Questions