Question 3.18: 10 mol/s of gas enters a steady state, adiabatic nozzle at T...

10 mol/s of gas enters a steady state, adiabatic nozzle at T = 300°C and P = 5 bar and leaves at T = 100°C and P = 1 bar. Find the exiting velocity of the gas if it is:

A) Steam
B) Nitrogen, modeled as an ideal gas
C) An ideal gas with CP=(7/2)R and a molecular mass of 28 g/mol

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Set up an energy balance around the nozzle.

\begin{aligned}\frac{\mathrm{d}}{\mathrm{dt}}\left\{N\left(\underline{\rm U}+\frac{\rm v^2}{2}+\rm gh\right) \right\} \\& =\dot{\mathrm{n}}_{\mathrm{in}}\left(\underline{\mathrm{H}}_{\text {in }}+\frac{\mathrm{v}_{\text {in }}^{2}}{2}+\mathrm{gh}_{\mathrm{in}}\right)-\dot{\mathrm{n}}_{\text {out }}\left(\underline{\mathrm{H}}_{\text {out }}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}+\mathrm{gh}_{\text {out }}\right)+\dot{\mathrm{W}}_{\mathrm{S}}+\dot{\mathrm{W}}_{\mathrm{EC}}+\dot{\mathrm{Q}}\end{aligned}

Cancelling terms as in (Example 3.4)

0=\dot{\mathrm{n}}_{\mathrm{in}}\left(\underline{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{n}}_{\mathrm{out}}\left(\underline{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}\right)

This balance is valid regardless of the specific gas travelling through the nozzle.

A) Steam at 300^{\circ} \mathrm{C} and 5 bar \rightarrow\left(2675.8 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)

Steam at 100^{\circ} \mathrm{C} and 1 \mathrm{bar} \rightarrow 3064.6 \frac{\mathrm{kJ}}{\mathrm{kg}}

(Even though the given flow rate is in mol/sec, this number cancels out, so it isn’t necessary to convert specific enthalpy into molar enthalpy.)

\begin{aligned}& 0=10 \frac{\mathrm{mol}}{\mathrm{sec}}\left(2675.8 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)-10 \frac{\mathrm{mol}}{\mathrm{sec}}\left(3064.6 \frac{\mathrm{kJ}}{\mathrm{kg}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}\right)\\& -\left(\frac{\mathrm{v}_{\text {out }}^{2}}{2}\right)=\left(2675.8 \frac{\mathrm{kJ}}{\mathrm{kg}}-3064.6 \frac{\mathrm{kJ}}{\mathrm{kg}}\right)\\& \sqrt{\rm v_{\text {out }}^{2}}=\sqrt{779.2 \frac{\mathrm{kJ}}{\mathrm{kg}}\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)\left(\frac{\mathrm{kg} \,\mathrm{\textrm {m } ^ { 2 }}}{\mathrm{J} \,\mathrm{\textrm {sec } ^ { 2 }}}\right)}=\bf 882.7 \frac{\mathbf{m}}{\mathbf{s e c}}\end{aligned}

B)

\begin{aligned}& 0=\dot{\mathrm{n}}_{\mathrm{in}}\left(\underline{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{n}}_{\mathrm{out}}\left(\underline{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}\right)\\& \frac{\mathrm{v}_{\text {out }}^{2}}{2}=\underline{\mathrm{H}}_{\mathrm{in}}-\underline{\mathrm{H}}_{\mathrm{out}}\end{aligned}

Use Appendix D to solve for \underline{H}_{\text {in }}-\underline{\mathrm{H}}_{\text {out }}

\begin{aligned}& \mathrm{d} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{P}} \mathrm{dT}\\& \frac{C_{P}^{*}}{R}=A+B T+C T^{2}+D T^{3}+E T^{4}\\& d \underline{\mathrm{H}}=\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+\mathrm{RET}^{4}\right) \mathrm{dT}\\& \int_{\text {out }}^{\text {in }} \mathrm{d} \underline{\mathrm{H}}=\int_{\text {out }}^{\text {in }}\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+\mathrm{RET}^{4}\right) \mathrm{dT}\\&\left(\underline{\mathrm{H}}_{\text {out }}-\underline{\mathrm{H}}_{\text {in }}\right)= \mathrm{RA}\left(\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)+\frac{\mathrm{RB}}{2}\left(\mathrm{~T}_{\text {out }}{ }^2-\mathrm{T}_{\text {in }}{ }^2\right)+\frac{\mathrm{RC}}{3}\left(\mathrm{~T}_{\text {out }}{ }^3-\mathrm{T}_{\text {in }}{ }^3\right) \\ & \qquad\qquad\qquad +\frac{\mathrm{RD}}{4}\left(\mathrm{~T}_{\text {out }}{ }^4-\mathrm{T}_{\text {in }}{ }^4\right)+\frac{\mathrm{RE}}{5}\left(\mathrm{~T}_{\text {out }}{ }^5-\mathrm{T}_{\text {in }}{ }^5\right)\\& \mathrm{T}_{\text {out }}=373 \mathrm{~K} \\& \mathrm{~T}_{\mathrm{in}}=573 \mathrm{~K}\end{aligned}

\begin{array}{|c|c|c|c|c|c|c|} \hline\bf Name & \bf Formula & \bf A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11}\\ \hline \rm Nitrogen & \rm N_2 & 3.539 & -0.261 & 0.007 & 0.157 & -0.099 \\ \hline\end{array}

\begin{aligned}& \left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)=\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol}~ \mathrm{K}}\right)\{(3.539)(373 \mathrm{~K}-573 \mathrm{~K}) \\& \qquad\qquad\qquad +\frac{1}{2}\left(-2.61 \times 10^{-4}\right)\left(373 \mathrm{~K}^{2}-573 \mathrm{~K}^{2}\right) \\& \qquad\qquad\qquad +\frac{1}{3}\left(7.00 \times 10^{-8}\right)\left(373 \mathrm{~K}^{3}-573 \mathrm{~K}^{3}\right) \\& \qquad\qquad\qquad +\frac{1}{4}\left(1.57 \times 10^{-9}\right)\left(373 \mathrm{~K}^{4}-573 \mathrm{~K}^{4}\right) \\& \qquad\qquad\qquad \left.+\frac{1}{5}\left(-9.9 \times 10^{-13}\right)\left(373 K^{5}-573 K^{5}\right)\right\} \\& \left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)=-5904.6 \frac{\mathrm{kJ}}{\mathrm{kmol}}\left(\frac{\mathrm{kmol}}{28.02 \mathrm{~kg}}\right)=-210.7 \frac{\mathrm{kJ}}{\mathrm{kg}} \\& \frac{\mathrm{v}_{\text {out }}^{2}}{2}=\underline{H}_{\mathrm{in}}-\underline{\mathrm{H}}_{\mathrm{out}} \\& \frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}=210.7 \frac{\mathrm{kJ}}{\mathrm{kg}}\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)\left(\frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{J~sec}^{2}}\right)=210700 \frac{\mathrm{m}^{2}}{\mathrm{sec}^{2}} \\& \mathrm{v}_{\mathrm{out}}=\bf 649 \frac{\mathbf{m}}{\mathbf{sec}}\end{aligned}

C) 

\begin{aligned} & 0=\dot{\mathrm{n}}_{\mathrm{in}}\left(\underline{\mathrm{H}}_{\mathrm{in}}\right)-\dot{\mathrm{n}}_{\text {out }}\left(\underline{\mathrm{H}}_{\mathrm{out}}+\frac{\mathrm{v}_{\text {out }}^{2}}{2}\right) \\& \frac{\mathrm{v}_{\text {out }}^{2}}{2}=\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\end{aligned}

Since this is an ideal gas, we can use:

\begin{aligned} & \mathrm{dH}=\mathrm{C}_{\mathrm{P}}^{*} \mathrm{dT}\\& \underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}=\left(\frac{7}{2}\right)\left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol} \,\mathrm{K}}\right)(300 \mathrm{~K}-100 \mathrm{~K})=5819.8 \frac{\mathrm{kJ}}{\mathrm{kmol}}\\& \frac{\mathrm{v}_{\mathrm{out}}^{2}}{2}=\left(5819.8 \frac{\mathrm{kJ}}{\mathrm{kmol}}\right)\left(\frac{\mathrm{kmol}}{28 \mathrm{~kg}}\right)\left(\frac{1000 \mathrm{~J}}{1 \mathrm{~kJ}}\right)\left(\frac{\mathrm{kg} \,\mathrm{m}^{2}}{\mathrm{~J} \,\mathrm{sec}^{2}}\right)\\& \mathrm{v}_{\mathrm{out}}=\bf 644.7 \frac{\mathrm{m}}{\mathrm{sec}}\end{aligned}


C_P^* = (7/2)R is sometimes used as a temperature independent approximation for the heat capacity of nitrogen. In this case comparing b and c illustrates that it produces a velocity that is ~3% different from that obtained from the more rigorous expression.

Related Answered Questions