Question 2.11: 10 mol/s of gas flow through a turbine. Find the change in e...

10 mol/s of gas flow through a turbine. Find the change in enthalpy that the gas
experiences:

A) The gas is steam, with an inlet temperature and pressure T=600° and P=10 bar, and an outlet temperature and pressure T = 400°C and P = 1 bar. Use the steam tables.
B) The gas is steam, with the same inlet and outlet conditions as in part A. Model the steam as an ideal gas using the value of Cp* given in Appendix D.
C) The gas is nitrogen, with an inlet temperature and pressure of T=300 K and P=10 bar, and an outlet temperature and pressure T = 200 K and P = 1 bar. Use Figure 2-3.
D) The gas is nitrogen with the same inlet and outlet conditions as in part C. Model the nitrogen as an ideal gas using the value of Cp* given in Appendix D.
E) Compare the answers to A and B, and the answers to C and D. Comment on whether they are significantly different from each other, and if so, why.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

A) Using the steam tables;

Steam at 600^{\circ} \mathrm{C} and 10 \,\mathrm{bar} \rightarrow 3698.6 \frac{\mathrm{kJ}}{\mathrm{kg}}

Steam at 400^{\circ} \mathrm{C} and 1 \,\mathrm{bar} \rightarrow 3278.6 \frac{\mathrm{kJ}}{\mathrm{kg}}

\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}=3278.6 \frac{\mathrm{kJ}}{\mathrm{kg}}-3698.6 \frac{\mathrm{kJ}}{\mathrm{kg}}=-\mathbf{4 2 0 . 0} \frac{\mathbf{k J}}{\mathbf{k g}}

B) 

\begin{aligned}& \mathrm{d} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{P}} \mathrm{dT}\\& \frac{C_{P}^{*}}{R}=A+B T+C T^{2}+D T^{3}+E T^{4}\\& \mathrm{d} \underline{\mathrm{H}}=\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+\mathrm{RDT}^{3}+\mathrm{RET}^{4}\right) \mathrm{dT}\\& \int_{\text {in }}^{\text {out }} \underline{\mathrm{H}}=\int_{\text {in }}^{\text {out }}\left(R A+R B T+R C T^{2}+R D T^{3}+R E T^{4}\right) d T\\& \left(\underline{\mathrm{H}}_{\text {out }}-\underline{\mathrm{H}}_{\text {in }}\right)= \mathrm{RA}\left(\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)+\frac{\mathrm{RB}}{2}\left(\mathrm{~T}_{\text {out }}{ }^2-\mathrm{T}_{\text {in }}{ }^2\right)+\frac{\mathrm{RC}}{3}\left(\mathrm{~T}_{\text {out }}{ }^3-\mathrm{T}_{\text {in }}{ }^3\right) \\ & \qquad\qquad\qquad +\frac{\mathrm{RD}}{4}\left(\mathrm{~T}_{\text {out }}{ }^4-\mathrm{T}_{\text {in }}{ }^4\right)+\frac{\mathrm{RE}}{5}\left(\mathrm{~T}_{\text {out }}{ }^5-\mathrm{T}_{\text {in }}{ }^5\right)\\& \mathrm{T}_{\mathrm{out}}=673 \mathrm{~K}\\& \mathrm{T}_{\text {in }}=873 \mathrm{~K}\end{aligned}

\begin{array}{|c|c|c|c|c|c|c|} \hline\bf Name & \bf Formula & A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11} \\\hline \rm Water & \rm H_2O & 4.395 & -4.186 & 1.405 & -1.564 & 0.632 \\ \hline \end{array}

\begin{aligned}\left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)= & \left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol} \mathrm{K}}\right)\{(4.395)(673 \mathrm{~K}-873 \mathrm{~K}) \\& +\frac{1}{2}\left(-4.186 \times 10^{-3}\right)\left(673 \mathrm{~K}^{2}-873 \mathrm{~K}^{2}\right) \\& +\frac{1}{3}\left(1.405 \times 10^{-5}\right)\left(673 \mathrm{~K}^{3}-873 \mathrm{~K}^{3}\right) \\& +\frac{1}{4}\left(-1.564 \times 10^{-8}\right)\left(673 \mathrm{~K}^{4}-873 \mathrm{~K}^{4}\right) \\& \left.+\frac{1}{5}\left(6.32 \times 10^{-12}\right)\left(673 \mathrm{~K}^{5}-873 \mathrm{~K}^{5}\right)\right\}\\\left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)=&-7702 \frac{\mathrm{kJ}}{\mathrm{kmol}}\left(\frac{1 \mathrm{kmol}}{18.02 \mathrm{~kg}}\right)=-\mathbf{4 2 7 . 4 1} \frac{\mathbf{k J}}{\mathbf{k g}}\end{aligned}

C) Based on Figure 2-3:

Nitrogen at 300 \mathrm{~K} and 10 \,\mathrm{bar} \rightarrow 459 \frac{\mathrm{kJ}}{\mathrm{kg}}

Nitrogen at 200 \mathrm{~K} and 1 \,\mathrm{bar} \rightarrow 357 \frac{\mathrm{kJ}}{\mathrm{kg}}

\widehat{\mathrm{H}}_{\mathrm{out}}-\widehat{\mathrm{H}}_{\mathrm{in}}=357 \frac{\mathrm{kJ}}{\mathrm{kg}}-459 \frac{\mathrm{kJ}}{\mathrm{kg}}=-\mathbf{1 0 2} \frac{\mathbf{k J}}{\mathbf{k g}}

D) 

\begin{aligned}&\mathrm{d} \underline{\mathrm{H}}=\mathrm{C}_{\mathrm{P}} \mathrm{dT} \\& \frac{C_{P}^{*}}{R}=A+B T+C T^{2}+D T^{3}+E T^{4} \\& \mathrm{~d} \underline{\mathrm{H}}=\left(\mathrm{RA}+\mathrm{RBT}+\mathrm{RCT}^{2}+R D T^{3}+\mathrm{RET}^{4}\right) \mathrm{dT} \\& \int_{\text {in }}^{\text {out }} \mathrm{d} \underline{\mathrm{H}}=\int_{\text {in }}^{\text {out }}\left(R A+R B T+R C T^{2}+R D T^{3}+R E T^{4}\right) d T\\& \left(\underline{H}_{\text {out }}-\underline{H}_{\text {in }}\right)= \mathrm{RA}\left(\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)+\frac{\mathrm{RB}}{2}\left(\mathrm{~T}_{\text {out }}{ }^2-\mathrm{T}_{\text {in }}{ }^2\right)+\frac{\mathrm{RC}}{3}\left(\mathrm{~T}_{\text {out }}{ }^3-\mathrm{T}_{\text {in }}{ }^3\right) \\ & \qquad\qquad\qquad +\frac{\mathrm{RD}}{4}\left(\mathrm{~T}_{\text {out }}{ }^4-\mathrm{T}_{\text {in }}{ }^4\right)+\frac{\mathrm{RE}}{5}\left(\mathrm{~T}_{\text {out }}{ }^5-\mathrm{T}_{\text {in }}{ }^5\right)\\& \mathrm{T}_{\text {out }}=200 \mathrm{~K}\\& \mathrm{T}_{\text {in }}=300 \mathrm{~K}\end{aligned}

\begin{array}{|c|c|c|c|c|c|c|}\hline \bf Name & \bf Formula & A & \bf B\times10^3 & \bf C\times10^5 & \bf D\times10^8 & \bf E\times10^{11} \\\hline \rm Nitrogen & \rm N_2 & 3.539 & -0.261 & 0.007 & 0.157 & -0.099 \\ \hline\end{array}

\begin{aligned}\left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)= & \left(8.314 \frac{\mathrm{kJ}}{\mathrm{kmol} \mathrm{K}}\right)\{(3.539)(200 \mathrm{~K}-300 \mathrm{~K}) \\& +\frac{1}{2}\left(-2.61 \times 10^{-4}\right)\left(200 \mathrm{~K}^{2}-300 \mathrm{~K}^{2}\right) \\& +\frac{1}{3}\left(7.00 \times 10^{-8}\right)\left(200 \mathrm{~K}^{3}-300 \mathrm{~K}^{3}\right) \\& +\frac{1}{4}\left(-1.57 \times 10^{-9}\right)\left(200 \mathrm{~K}^{4}-300 \mathrm{~K}^{4}\right) \\& \left.+\frac{1}{5}\left(9.9 \times 10^{-13}\right)\left(200 \mathrm{~K}^{5}-300 \mathrm{~K}^{5}\right)\right\}\\ \left(\underline{\mathrm{H}}_{\mathrm{out}}-\underline{\mathrm{H}}_{\mathrm{in}}\right)=&-2909 \frac{\mathrm{kJ}}{\mathrm{kmol}}\left(\frac{\mathrm{kmol}}{28.02 \mathrm{~kg}}\right)=-\mathbf{1 0 3 . 8} \frac{\mathbf{k J}}{\mathbf{k g}}\end{aligned}

E) The answers from parts a and b differ by ~7 kJ/kg, the answers from parts c and d by ~2 kJ/kg. In both cases the percent error is ~1.7%. Whether this is an acceptable level of error depends upon the application. The differences are attributable to the fact that the ideal gas model is an approximation that is best at low pressure, and these processes included pressures up to 10 bar. 

Related Answered Questions