Question 8.10: ^11 Imagine an iron sphere of radius R that carries a charge...

^{11}Imagine an iron sphere of radius R that carries a charge Q and a uniform magnetization M =M \hat{ z }. The sphere is initially at rest

(a) Compute the angular momentum stored in the electromagnetic fields.

(b) Suppose the sphere is gradually (and uniformly) demagnetized (perhaps by heating it up past the Curie point). Use Faraday’s law to determine the induced electric field, find the torque this field exerts on the sphere, and calculate the total angular momentum imparted to the sphere in the course of the demagnetization.

(c) Suppose instead of demagnetizing the sphere we discharge it, by connecting a grounding wire to the north pole. Assume the current flows over the surface in such a way that the charge density remains uniform. Use the Lorentz force law to determine the torque on the sphere, and calculate the total angular momentum imparted to the sphere in the course of the discharge. (The magnetic field is discontinuous at the surface . . . does this matter?) [Answer: \frac{2}{9} \mu_{0} M Q R^{2}]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

E =\left\{\begin{array}{ll} 0 , & (r<R) \\\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r^{2}} \hat{ r }, & (r>R)\end{array}\right\}B =\left\{\begin{array}{ll}\frac{2}{3} \mu_{0} M \hat{ z }, & (r<R) \ \\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}[2 \cos \theta \hat{ r }+\sin\theta \hat{ \theta }], & (r>R)\end{array}\right\}  (Ex. 6.1)

\text { (where } \left.m=\frac{4}{3} \pi R^{3} M\right) ; g =\epsilon_{0}( E \times B )=\frac{\mu_{0}}{(4 \pi)^{2}} \frac{Q m}{r^{5}}(\hat{ r } \times \hat{ \theta }) \sin \theta, \text { and }(\hat{ r } \times \hat{ \theta })=\hat{\phi} , so

\ell = r \times g =\frac{\mu_{0}}{(4 \pi)^{2}} \frac{m Q}{r^{4}} \sin \theta(\hat{ r } \times \hat{ \phi }).

\text { But } \left.(\hat{ r } \times \hat{ \phi })=-\hat{ \theta }, \text { and only the } z \text { component will survive integration, so (since }(\hat{ \theta })_{z}=-\sin \theta\right) :

L =\frac{\mu_{0} m Q}{(4 \pi)^{2}} \hat{ z } \int \frac{\sin ^{2} \theta}{r^{4}}\left(r^{2} \sin \theta d r d \theta d \phi\right) . \quad \int_{0}^{2 \pi} d \phi=2 \pi ; \quad \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{4}{3} ; \quad \int_{R}^{\infty} \frac{1}{r^{2}} d r=\left.\left(-\frac{1}{r}\right)\right|_{R} ^{\infty}=\frac{1}{R} .

L =\frac{\mu_{0} m Q}{(4 \pi)^{2}} \hat{ z }(2 \pi)\left(\frac{4}{3}\right)\left(\frac{1}{R}\right)=\frac{2}{9} \mu_{0} M Q R^{2} \hat{ z } .

(b) Apply Faraday’s law to the ring shown:

\oint E \cdot d l =E(2 \pi r \sin \theta)=-\frac{d \Phi}{d t}=-\pi(r \sin \theta)^{2}\left(\frac{2}{3} \mu_{0} \frac{d M}{d t}\right)

 

\Rightarrow E =-\frac{\mu_{0}}{3} \frac{d M}{d t}(r \sin \theta) \hat{\phi} .

The force on a patch of surface (da) is (d a) \text { is } d F =\sigma E d a=-\frac{\mu_{0} \sigma}{3} \frac{d M}{d t}(r \sin \theta) d a \hat{ \phi }\left(\sigma=\frac{Q}{4 \pi R^{2}}\right) .

The torque on the patch is  d N = r \times d F =-\frac{\mu_{0} \sigma}{3} \frac{d M}{d t}\left(r^{2} \sin \theta\right) d a(\hat{ r } \times \hat{ \phi }) . \text { But }(\hat{ r } \times \hat{ \phi })=-\hat{ \theta } , and we want only the z component \left(\hat{ \theta }_{z}=-\sin \theta\right) :

N =-\frac{\mu_{0} \sigma}{3} \frac{d M}{d t} \hat{ z } \int r^{2} \sin ^{2} \theta\left(r^{2} \sin \theta d \theta d \phi\right) .

\text { Here } r=R ; \int_{0}^{\pi} \sin ^{3} \theta d \theta=\frac{4}{3} ; \int_{0}^{2 \pi} d \phi=2 \pi, \text { so } N =-\frac{\mu_{0} \sigma}{3} \frac{d M}{d t} \hat{ z } R^{4}\left(\frac{4}{3}\right)(2 \pi)=-\frac{2 \mu_{0}}{9} Q R^{2} \frac{d M}{d t} \hat{ z } .

L =\int N d t=-\frac{2 \mu_{0}}{9} Q R^{2} \hat{ z } \int_{M}^{0} d M=\frac{2 \mu_{0}}{9} M Q R^{2} \hat{ z } (same as (a))

(c) Let the charge on the sphere at time t be q(t); the charge density is \sigma=\frac{q(t)}{4 \pi R^{2}} . The charge below (“south of”) the ring in the figure is

q_{s}=\sigma\left(2 \pi R^{2}\right) \int_{0}^{\pi} \sin \theta^{\prime} d \theta^{\prime}=\left.\frac{q}{2}\left(-\cos \theta^{\prime}\right)\right|_{\theta} ^{\pi}=\frac{q}{2}(1+\cos \theta) .

So the total current crossing the ring (flowing “north”) is I(t)=-\frac{1}{2} \frac{d q}{d t}(1+\cos \theta) , and hence

K (t)=\frac{I}{2 \pi R \sin \theta}(-\hat{ \theta })=\frac{1}{4 \pi R} \frac{d q}{d t} \frac{(1+\cos \theta)}{\sin \theta} \hat{ \theta } . The force on a patch of area da is dF = (K × B) da.

B _{ ave }=\left[\frac{2}{3} \mu_{0} M \hat{ z }+\frac{\mu_{0}}{4 \pi} \frac{\frac{4}{3} \pi R^{3} M}{R^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })\right] \frac{1}{2}=\frac{\mu_{0} M}{6}[2 \hat{ z }+2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta }] ;

K \times B =\frac{1}{4 \pi R} \frac{d q}{d t} \frac{\mu_{0} M}{6} \frac{(1+\cos \theta)}{\sin \theta}[2(\hat{ \theta } \times \hat{ z })+2 \cos \theta \underbrace{(\hat{ \theta } \times \hat{ r })}_{-\hat{\phi}}].

d N =R \hat{ r } \times d F =\frac{\mu_{0} M}{24 \pi}\left(\frac{d q}{d t}\right) \frac{(1+\cos \theta)}{\sin \theta} 2[\underbrace{\hat{ r } \times(\hat{ \theta } \times \hat{ z })}_{\hat{ \theta }(\hat{ r } \cdot \hat{ z })-\hat{ z }(\hat{ r } \cdot \hat{ \theta })}-\cos \theta \underbrace{(\hat{ r } \times \hat{ \phi })}_{-\hat{ \theta }}] R^{2} \sin \theta d \theta d \phi

 

=\frac{\mu_{0} M}{12 \pi}\left(\frac{d q}{d t}\right)(1+\cos \theta) R^{2}[\cos \theta \hat{ \theta }+\cos \theta \hat{ \theta }] d \theta d \phi=\frac{\mu_{0} M R^{2}}{6 \pi}\left(\frac{d q}{d t}\right)(1+\cos \theta) \cos \theta d \theta d \phi \hat{ \theta } .

The x and y components integrate to zero; (\hat{ \theta })_{z}=-\sin \theta, \text { so }\left(\text { using } \int_{0}^{2 \pi} d \phi=2 \pi\right) :

N_{z}=-\frac{\mu_{0} M R^{2}}{6 \pi}\left(\frac{d q}{d t}\right)(2 \pi) \int_{0}^{\pi}(1+\cos \theta) \cos \theta \sin \theta d \theta=-\left.\frac{\mu_{0} M R^{2}}{3}\left(\frac{d q}{d t}\right)\left(\frac{\sin ^{2} \theta}{2}-\frac{\cos ^{3} \theta}{3}\right)\right|_{0} ^{\pi}

 

=-\frac{\mu_{0} M R^{2}}{3}\left(\frac{d q}{d t}\right)\left(\frac{2}{3}\right)=-\frac{2 \mu_{0}}{9} M R^{2} \frac{d q}{d t} . \quad N =-\frac{2 \mu_{0}}{9} M R^{2} \frac{d q}{d t} \hat{ z } .

Therefore

L =\int N d t=-\frac{2 \mu_{0}}{9} M R^{2} \hat{ z } \int_{Q}^{0} d q=\frac{2 \mu_{0}}{9} M R^{2} Q \hat{ z } (same as (a)).

(I used the average field at the discontinuity—which is the correct thing to do—but in this case you’d get the same answer using either the inside field or the outside field.)

8.10

Related Answered Questions