Question 7.8: 120 lbm of liquefied natural gas (LNG) are stored in a rigid...

120 \rm lb_m of liquefied natural gas (LNG) are stored in a rigid, sealed 6 ft³ vessel. In this problem, model LNG as 100% methane. Due to a failure in the cooling/insulation system, the temperature increases to –100°F, which is above the critical temperature; thus the natural gas will no longer be in the liquid phase. Find the final pressure of the supercritical methane using:

A) the ideal gas law
B) the van der Waals equation
C) the Soave equation
D) the Lee-Kesler generalized correlation in Section 7.3.2.
E) Figure 7-1.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Useful in several parts of the problem are the number of moles:

n=\frac{M}{M W}=\frac{120~ \mathrm{lb}_{\mathrm{m}}}{16 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{lb~mol}}}=7.5 ~\mathrm{lb~mol}

And the molar volume:

\underline{V}=\frac{6 \mathrm{ft}^3}{7.5 \mathrm{lb~mol}}=0.8 \frac{\mathrm{ft}^3}{\mathrm{lb~mol}}

Or equivalently:

\underline{V}=\left(0.8 \frac{\mathrm{ft}^3}{\mathrm{lb~mol}}\right)\left(\frac{12 \mathrm{~in}}{1 \mathrm{~ft}}\right)^3\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{~in}}\right)^3\left(\frac{1 \mathrm{~lb~mol}}{453.6 \mathrm{~gmol}}\right)=49.94 \frac{\mathrm{cm}^3}{\mathrm{~mol}}

The temperature -100°F is equivalent to (-100+459.6)=359.6°R

Which is also equivalent to (5/9)(359.6)=199.8 K.

A) Applying the ideal gas law:

P=\frac{R T}{\widehat{V}}=\frac{\left(10.731 \frac{\mathrm{psia} \,\cdot \,\mathrm{ft}^3}{\mathrm{lb~mol} \,\cdot\,{ }^{\circ} \mathrm{R}}\right)\left(359.6^{\circ} \mathrm{R}\right)}{0.8 \frac{\mathrm{ft}^3}{\mathrm{lb~mol}}}=(4824 \,\mathrm{psia})\left(\frac{1 \mathrm{~atm}}{14.696 \,\mathrm{psia}}\right)=\mathbf{3 2 8} \mathbf{~ a t m}

B) For the van der Waals equation of state, from section 7.2.7:

a=\frac{27}{64} \frac{R^2 T_c^2}{P_c} \quad \text { and } \quad b=\frac{R T_c}{8 P_c}

Here using data from Appendix C for methane:

\begin{gathered}a=\frac{27}{64} \frac{R^2 T_c^2}{P_c} \quad \text { and } \quad b=\frac{R T_c}{8 P_c} \\ a=\frac{27}{64} \frac{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}}\right)^2(190.56 \mathrm{~K})^2}{(45.99 \mathrm{~bar})} \quad \text { and } \quad b=\frac{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}}\right)(190.56 \mathrm{~K})}{8(45.99 \mathrm{~bar})} \\ a=2.303 \times 10^6 \frac{\mathrm{bar} \mathrm{cm}^6}{\mathrm{~mol}^2} \quad \text { and } \quad b=43.06 \frac{\mathrm{cm}^3}{\mathrm{~mol}^3} \\ P=\frac{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}}\right)(199.8 \mathrm{~K})}{49.94-43.06 \frac{\mathrm{cm}^3}{\mathrm{~mol}}}-\frac{2.303 \times 10^6 \frac{\mathrm{bar} \mathrm{~cm}^6}{\mathrm{~mol}^2}}{\left(49.94 \frac{\mathrm{cm}^3}{\mathrm{~mol}^2}\right)^2}=(1372 \mathrm{~bar})\left(\frac{1 \mathrm{~atm}}{1.013 \mathrm{~bar}}\right)\\ =\bf 1355 ~atm\end{gathered}

C) Applying the expressions from section 7.2.7 and data from Appendix C to find the Soave a and b:

\begin{gathered}m=0.480+1.574 \omega-0.176 \omega^2 \\ m=0.480+1.574(0.011)-0.176(0.011)^2=0.497 \\ \alpha=\left[1+m\left(1-T_r^{0.5}\right)\right]^2 \\ \alpha=\left[1+(0.497)\left(1-\left(\frac{199.8 \mathrm{~K}}{190.56 \mathrm{~K}}\right)^{0.5}\right)\right]^2 \\ \alpha=0.9763 \\ a_c=0.42747 R^2 \frac{T_C^2}{P_c} \\ a=0.42747 \frac{\left(83.14 \frac{\rm{ bar~cm }^3}{\text { mol } K}\right)^2(190.56 \mathrm{~K})^2}{(45.99 \text { bar })}=2.333 \times 10^6 \frac{\mathrm{bar} \mathrm{~cm}^6}{\mathrm{~mol}^2} \\ a_c \alpha=\left(2.333 \times 10^6 \frac{\mathrm{bar} \mathrm{~cm}^6}{\mathrm{~mol}^2}\right)(0.9763)=2.278 \times 10^6 \frac{\mathrm{bar} ~\mathrm{cm}^6}{\mathrm{~mol}^2} \\ b=0.08664 R \frac{T_c}{P_c}\\b=\frac{(0.08664)\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}^3}\right)(190.56 \mathrm{~K})}{(45.99 \mathrm{~bar})}=29.85 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\end{gathered}

The Soave equation is:

\begin{gathered}P=\frac{R T}{\underline{V}-b}-\frac{a}{\underline{V}(\underline{V}+b)} \\ P=\frac{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}^3}\right)(199.8 \mathrm{~K})}{49.94-29.85 \frac{\mathrm{cm}^3}{\mathrm{~mol}}}-\frac{2.278 \times 10^6 \frac{\mathrm{bar} \mathrm{~cm}^6}{\mathrm{~mol}^2}}{\left(49.94 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)\left(49.94+29.85 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)}=255.2 \mathrm{~bar}\end{gathered}

This is equivalent to ~252 atm.

D) When using the Lee-Kessler approach, we must know P and T to find Z. Since P is the unknown, there is no clear way to proceed other than iterating. For example, if the answer from part C were the correct P, then by the definition of Z:

Z=\frac{P \underline{V}}{R T}=\frac{(255 \,\mathrm{bar})\left(49.94 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)}{\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}}\right)(199.8 \mathrm{~K})}=0.767

But is this the Z we get from the Lee Kessler approach?

\begin{gathered}P_r=\frac{P}{P_c}=\frac{255}{45.99}=5.54 \\T_r=\frac{T}{T_c}=\frac{199.8}{190.56}=1.05\end{gathered}

From the figures Z^0 \sim 0.75 and Z^1 \sim-0.18

\begin{gathered}Z=Z^0+\omega Z^1 \\Z=0.75+(0.011)(-0.13) \sim 0.75\end{gathered}

This is slightly smaller than the value we obtained from the definition of Z, but is probably within the accuracy of the graphs. To check, we could insert this Z into the definition of Z and compute a new P :

P=\frac{Z R T}{\underline{V}}=\frac{0.75\left(83.14 \frac{\mathrm{bar~cm}^3}{\mathrm{~mol} \mathrm{~K}}\right)(199.8 \mathrm{~K})}{\left(49.94 \frac{\mathrm{cm}^3}{\mathrm{~mol}}\right)}=249 \,\mathrm{bar}

P_r=\frac{249}{45.99}=5.42

And when we use this \rm P_r(T_r is still 1.05) in the figure, we get Z=0.75, so this is a correct answer. But due to the accuracy of the figures we can’t realistically say it has more than two significant figures:

P~250 bar~250 atm

E)

\rho=\frac{120 \,l b_m}{6 \,f t^3}=20 \frac{l b_m}{f t^3}

From the figure, with T = -100°F and ρ=20 \rm lb_m/ft³, P~3300 psia. This is equivalent to ~225 atm.

Related Answered Questions