Question 8.13: ^16 A very long solenoid of radius a, with n turns per unit ...

^{16} A very long solenoid of radius a, with n turns per unit length, carries a current I_{s}. Coaxial with the solenoid, at radius b ≪ a, is a circular ring of wire, with resistance R. When the current in the solenoid is (gradually) decreased, a current I_{r} is induced in the ring.

(a) Calculate  I_{r} \text {, in terms of } d I_{s} / d t .

(b) The power \left(I_{r}^{2} R\right) delivered to the ring must have come from the solenoid. Confirm this by calculating the Poynting vector just outside the solenoid (the electric field is due to the changing flux in the solenoid; the magnetic field is due to the current in the ring). Integrate over the entire surface of the solenoid, and check that you recover the correct total power

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { (a) } ε =-\frac{d \Phi}{d t} ; \Phi=\pi a^{2} B ; B=\mu_{0} n I_{s} ; ε =I_{r} R . \text { So } I_{r}=-\frac{1}{R}\left(\mu_{0} \pi a^{2} n\right) \frac{d I_{s}}{d t}.

\text { (b) } \oint E \cdot d l =-\frac{d \Phi}{d t} \Rightarrow E(2 \pi a)=-\mu_{0} \pi a^{2} n \frac{d I_{s}}{d t} \Rightarrow E =-\frac{1}{2} \mu_{0} a n \frac{d I_{s}}{d t} \hat{\phi} . B =\frac{\mu_{0} I_{r}}{2} \frac{b^{2}}{\left(b^{2}+z^{2}\right)^{3 / 2}} \hat{ z } (Eq. 5.41).

B(z)=\frac{\mu_{0} I}{4 \pi}\left(\frac{\cos \theta}{ᴫ^{2}}\right) 2 \pi R=\frac{\mu_{0} I}{2} \frac{R^{2}}{\left(R^{2}+z^{2}\right)^{3 / 2}}                                     (5.41)

S =\frac{1}{\mu_{0}}( E \times B )=\frac{1}{\mu_{0}}\left(-\frac{\mu_{0} a n}{2} \frac{d I_{s}}{d t}\right)\left(\frac{\mu_{0} I_{r}}{2} \frac{b^{2}}{\left(b^{2}+z^{2}\right)^{3 / 2}}\right)(\hat{ \phi } \times \hat{ z })=-\frac{1}{4} \mu_{0} I_{r} \frac{d I_{s}}{d t} \frac{a b^{2} n}{\left(b^{2}+z^{2}\right)^{3 / 2}} \hat{ s } .

Power:

P=\int S \cdot d a =\int_{-\infty}^{\infty}(S)(2 \pi a) d z=-\frac{1}{2} \pi \mu_{0} a^{2} b^{2} n I_{r} \frac{d I_{s}}{d t} \int_{-\infty}^{\infty} \frac{1}{\left(b^{2}+z^{2}\right)^{3 / 2}} d z

The integral is  \left.\frac{z}{b^{2} \sqrt{z^{2}+b^{2}}}\right|_{-\infty} ^{\infty}=\frac{1}{b^{2}}-\left(-\frac{1}{b^{2}}\right)=\frac{2}{b^{2}} .

=-\left(\pi \mu_{0} a^{2} n \frac{d I_{s}}{d t}\right) I_{r}=\left(R I_{r}\right) I_{r}=I_{r}{ }^{2} R . \quad \text { qed }

Related Answered Questions