Question 8.16: ^17 A sphere of radius R carries a uniform polarization P an...

^{17}  A sphere of radius R carries a uniform polarization P and a uniform magnetization M (not necessarily in the same direction). Find the electromagnetic momentum of this configuration. [Answer: (4 / 9) \pi \mu_{0} R^{3}( M \times P )]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

According to Eqs. 3.104, 4.14, 5.89, and 6.16, the fields are

E _{ dip }( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]                               (3.104)

E =-\nabla V=-\frac{P}{3 \epsilon_{0}} \hat{ z }=-\frac{1}{3 \epsilon_{0}} P , \quad \text { for } \quad r<R                          (4.14)

B _{ dip }( r )=\frac{\mu_{0}}{4 \pi} \frac{1}{r^{3}}[3( m \cdot \hat{ r }) \hat{ r }- m ]                              (5.89)

B =\frac{2}{3} \mu_{0} M                                 (6.16)

E =\left\{\begin{array}{ll}-\frac{1}{3 \epsilon_{0}} P , & (r<R) \\\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ], & (r>R)\end{array}\right\}B =\left\{\begin{array}{ll}\frac{2}{3} \mu_{0} M , & (r<R) \\\frac{\mu_{0}}{4 \pi} \frac{m}{r^{3}}[3( m \cdot \hat{ r }) \hat{ r }- m ], & (r>R)\end{array}\right\}

where p =(4 / 3) \pi R^{3} P , \text { and } m =(4 / 3) \pi R^{3} M . \text { Now } p =\epsilon_{0} \int( E \times B ) d \tau , and there are two contributions, one from inside the sphere and one from outside.

Inside:

p _{ in }=\epsilon_{0} \int\left(-\frac{1}{3 \epsilon_{0}} P \right) \times\left(\frac{2}{3} \mu_{0} M \right) d \tau=-\frac{2}{9} \mu_{0}( P \times M ) \int d \tau=-\frac{2}{9} \mu_{0}( P \times M ) \frac{4}{3} \pi R^{3}=\frac{8}{27} \mu_{0} \pi R^{3}( M \times P ).

Outside:

p _{\text {out }}=\epsilon_{0} \frac{1}{4 \pi \epsilon_{0}} \frac{\mu_{0}}{4 \pi} \int \frac{1}{r^{6}}\{[3( p \cdot \hat{ r }) \hat{ r }- p ] \times[3( m \cdot \hat{ r }) \hat{ r }- m ]\} d \tau.

Now  \hat{ r } \times( p \times m )= p (\hat{ r } \cdot m )- m (\hat{ r } \cdot p ), \text { so } \hat{ r } \times[\hat{ r } \times( p \times m )]=(\hat{ r } \cdot m )(\hat{ r } \times p )-(\hat{ r } \cdot p )(\hat{ r } \times m ) , whereas using the BAC-CAB rule directly gives \hat{ r } \times[\hat{ r } \times( p \times m )]=\hat{ r }[\hat{ r } \cdot( p \times m )]-( p \times m )(\hat{ r } \cdot \hat{ r }) . \text { So }\{[3( p \cdot \hat{ r }) \hat{ r }- p ] \times[3( m \cdot \hat{ r }) \hat{ r }- m ]\}= -3( p \cdot \hat{ r })(\hat{ r } \times m )+3( m \cdot \hat{ r })(\hat{ r } \times p )+( p \times m )=3\{\hat{ r }[\hat{ r } \cdot( p \times m )]-( p \times m )\}+( p \times m )=-2( p \times m )+3 \hat{ r }[\hat{ r } \cdot( p \times m )].

p _{\text {out }}=\frac{\mu_{0}}{16 \pi^{2}} \int \frac{1}{r^{6}}\{-2( p \times m )+3 \hat{ r }[\hat{ r } \cdot( p \times m )]\} r^{2} \sin \theta d r d \theta d \phi .

To evaluate the integral, set the z axis along (× m); then \hat{ r } \cdot( p \times m )=| p \times m | \cos \theta . Meanwhile, \hat{ r }=\sin \theta \cos \phi \hat{ x }+\sin \theta \sin \phi \hat{ y }+\cos \theta \hat{ z } \text {. But } \sin \phi \text { and } \cos \phi \text { integrate to zero, so the } \hat{ x } \text { and } \hat{ y } terms drop out, leaving 

p _{\text {out }}=\frac{\mu_{0}}{16 \pi^{2}}\left(\int_{0}^{\infty} \frac{1}{r^{4}} d r\right)\left\{-2( p \times m ) \int \sin \theta d \theta d \phi+3| p \times m | \hat{ z } \int \cos ^{2} \theta \sin \theta d \theta d \phi\right\}

 

=\left.\frac{\mu_{0}}{16 \pi^{2}}\left(-\frac{1}{3 r^{3}}\right)\right|_{R} ^{\infty}\left[-2( p \times m ) 4 \pi+3( p \times m ) \frac{4 \pi}{3}\right]=-\frac{\mu_{0}}{12 \pi R^{3}}( p \times m )

 

=-\frac{\mu_{0}}{12 \pi R^{3}}\left(\frac{4}{3} \pi R^{3} P \right) \times\left(\frac{4}{3} \pi R^{3} M \right)=\frac{4 \mu_{0}}{27} R^{3}( M \times P ) .

p _{ tot }=\left(\frac{8}{27}+\frac{4}{27}\right) \mu_{0} R^{3}( M \times P )=\frac{4}{9} \mu_{0} R^{3}( M \times P ).

Related Answered Questions