Question 10.32: ^22 A particle of charge q1 is at rest at the origin. A seco...

22^{22} A particle of charge q1q_{1} is at rest at the origin. A second particle, of charge q2q_{2}, moves along the z axis at constant velocity υ.

(a) Find the force F12(t) of q1 on q2, at time t (when q2 is at z=vt ) F _{12}(t) \text { of } q_{1} \text { on } q_{2} \text {, at time } t \text { (when } q_{2} \text { is at } z=v t \text { ) } .

(b) Find the force F21(t) of q2 on q1F _{21}(t) \text { of } q_{2} \text { on } q_{1} , at time t. Does Newton’s third law hold, in this case? 

(c) Calculate the linear momentum p(t) in the electromagnetic fields, at time t. (Don’t bother with any terms that are constant in time, since you won’t need them in part (d)).  [Answer: (μ0q1q2/4πt)z^]\text { [Answer: } \left.\left(\mu_{0} q_{1} q_{2} / 4 \pi t\right) \hat{ z }\right]

(d) Show that the sum of the forces is equal to minus the rate of change of the momentum in the fields, and interpret this result physically

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

 (a) F12(t)=14πϵ0q1q2(vt)2z^\text { (a) } F _{12}(t)=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{(v t)^{2}} \hat{ z } .

(b) From Eq. 10.75, with θ=180,R=vt, and R^=z^\theta=180^{\circ}, R=v t, \text { and } \hat{ R }=-\hat{ z }:

F21(t)=14πϵ0q1q2(1v2/c2)(vt)2z^F _{21}(t)=-\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}\left(1-v^{2} / c^{2}\right)}{(v t)^{2}} \hat{ z } .

E(r,t)=q4πϵ01v2/c2(1v2sin2θ/c2)3/2R^R2E ( r , t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}}                                    (10.75)

No, Newton’s third law does not hold: F12F21F _{12} \neq F _{21} because of the extra factor (1v2/c2)\left(1-v^{2} / c^{2}\right) .

(c) From Eq. 8.28,

p=μ0ϵ0νSdτp =\mu_{0} \epsilon_{0} \int_{ \nu } S d \tau                      (8.28)

p=ϵ0(E×B)dτ. Here E=E1+E2p =\epsilon_{0} \int( E \times B ) d \tau . \text { Here } E = E _{1}+ E _{2} . Here E=E1+E2, whereas B=B2, so E×B=(E1×B2)+(E2×B2)E = E _{1}+ E _{2}, \text { whereas } B = B _{2}, \text { so } E \times B =\left( E _{1} \times B _{2}\right)+\left( E _{2} \times B _{2}\right) \text {. }.

But the latter, when integrated over all space, is independent of time. We want only the time-dependent part:

p(t)=ϵ0(E1×B2)dτ. Now E1=14πϵ0q1r2r^, while, from Eq. 10.76,B2=1c2(v×E2)p (t)=\epsilon_{0} \int\left( E _{1} \times B _{2}\right) d \tau . \text { Now } E _{1}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1}}{r^{2}} \hat{ r }, \text { while, from Eq. } 10.76, B _{2}=\frac{1}{c^{2}}\left( v \times E _{2}\right) , and (Eq. 10.75)

B=1c(^×E)=1c2(v×E)B =\frac{1}{c}(\hat{ᴫ} \times E )=\frac{1}{c^{2}}( v \times E )                                 (10.76)

E2=q24πϵ0(1v2/c2)(1v2sin2θ/c2)3/2R^R2.ButR=rvt;R2=r2+v2t22rvtcosθ;sinθ=rsinθRE _{2}=\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{\left(1-v^{2} / c^{2}\right)}{\left(1-v^{2} \sin ^{2} \theta^{\prime} / c^{2}\right)^{3 / 2}} \frac{\hat{ R }}{R^{2}} . \operatorname{But} R = r – v t ; R^{2}=r^{2}+v^{2} t^{2}-2 r v t \cos \theta ; \sin \theta^{\prime}=\frac{r \sin \theta}{R} . So

E2=q24πϵ0(1v2/c2)[1(vrsinθ/Rc)2]3/2(rvt)R3E _{ 2 }=\frac{q_{2}}{4 \pi \epsilon_{0}} \frac{\left(1-v^{2} / c^{2}\right)}{\left[1-(v r \sin \theta / R c)^{2}\right]^{3 / 2}} \frac{( r – v t)}{R^{3}} . Finally, noting that v×(rvt)=v×r=vrsinθϕ^v \times( r – v t)= v \times r =v r \sin \theta \hat{\phi}  , we get

B2=q2(1v2/c2)4πϵ0c2vrsinθ[R2(vrsinθ/c)2]3/2ϕ^. So p(t)=ϵ0q14πϵ0q2(1v2/c2)v4πϵ0c21r2rsinθ(r^×ϕ^)[R2(vrsinθ/c)2]3/2B _{2}=\frac{q_{2}\left(1-v^{2} / c^{2}\right)}{4 \pi \epsilon_{0} c^{2}} \frac{v r \sin \theta}{\left[R^{2}-(v r \sin \theta / c)^{2}\right]^{3 / 2}} \hat{\phi} . \text { So } p (t)=\epsilon_{0} \frac{q_{1}}{4 \pi \epsilon_{0}} \frac{q_{2}\left(1-v^{2} / c^{2}\right) v}{4 \pi \epsilon_{0} c^{2}} \int \frac{1}{r^{2}} \frac{r \sin \theta(\hat{ r } \times \hat{ \phi })}{\left[R^{2}-(v r \sin \theta / c)^{2}\right]^{3 / 2}}.

Butr^×ϕ^=θ^=(cosθcosϕx^+cosθsinϕy^sinθz^)\operatorname{But} \hat{ r } \times \hat{ \phi }=-\hat{ \theta }=-(\cos \theta \cos \phi \hat{ x }+\cos \theta \sin \phi \hat{ y }-\sin \theta \hat{ z }) , and the x and y components integrate to zero, so:

p(t)=q1q2v(1v2/c2)z^(4πc)2ϵ0sin2θr[r2+(vt)22rvtcosθ(vrsinθ/c)2]3/2r2sinθdrdθdϕp (t)=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{(4 \pi c)^{2} \epsilon_{0}} \int \frac{\sin ^{2} \theta}{r\left[r^{2}+(v t)^{2}-2 r v t \cos \theta-(v r \sin \theta / c)^{2}\right]^{3 / 2}} r^{2} \sin \theta d r d \theta d \phi

 

=q1q2v(1v2/c2)z^8πc2ϵ0rsin3θ[r2+(vt)22rvtcosθ(vrsinθ/c)2]3/2drdθ=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{8 \pi c^{2} \epsilon_{0}} \int \frac{r \sin ^{3} \theta}{\left[r^{2}+(v t)^{2}-2 r v t \cos \theta-(v r \sin \theta / c)^{2}\right]^{3 / 2}} d r d \theta .

I’ll do the r integral first. According to the CRC Tables,

0x(a+bx+cx2)3/2dx=2(bx+2a)(4acb2)a+bx+cx20=24acb2[bc2aa]\int_{0}^{\infty} \frac{x}{\left(a+b x+c x^{2}\right)^{3 / 2}} d x=-\left.\frac{2(b x+2 a)}{\left(4 a c-b^{2}\right) \sqrt{a+b x+c x^{2}}}\right|_{0} ^{\infty}=-\frac{2}{4 a c-b^{2}}\left[\frac{b}{\sqrt{c}}-\frac{2 a}{\sqrt{a}}\right]

 

=2c(4acb2)(b2ac)=2c(2acb)(2acb)(2ac+b)=2c(2ac+b)1=-\frac{2}{\sqrt{c}\left(4 a c-b^{2}\right)}(b-2 \sqrt{a c})=\frac{2}{\sqrt{c}} \frac{(2 \sqrt{a c}-b)}{(2 \sqrt{a c}-b)(2 \sqrt{a c}+b)}=\frac{2}{\sqrt{c}}(2 \sqrt{a c}+b)^{-1} .

 In this case x=r,a=(vt)2,b=2vtcosθ, and c=1(v/c)2sin2θ. So the r integral \text { In this case } x=r, a=(v t)^{2}, b=-2 v t \cos \theta, \text { and } c=1-(v / c)^{2} \sin ^{2} \theta . \text { So the } r \text { integral } is

21(v/c)2sin2θ[2vt1(v/c)2sin2θ2vtcosθ]=1vt1(v/c)2sin2θ[1(v/c)2sin2θcosθ]\frac{2}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[2 v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}-2 v t \cos \theta\right]}=\frac{1}{v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[\sqrt{1-(v / c)^{2} \sin ^{2} \theta}-\cos \theta\right]}

 

=[1(v/c)2sin2θ+cosθ]vt1(v/c)2sin2θ[1(v/c)2sin2θcos2θ]=1vtsin2θ(1v2/c2)[1+cosθ1(v/c)2sin2θ]=\frac{\left[\sqrt{1-(v / c)^{2} \sin ^{2} \theta}+\cos \theta\right]}{v t \sqrt{1-(v / c)^{2} \sin ^{2} \theta}\left[1-(v / c)^{2} \sin ^{2} \theta-\cos ^{2} \theta\right]}=\frac{1}{v t \sin ^{2} \theta\left(1-v^{2} / c^{2}\right)}\left[1+\frac{\cos \theta}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}}\right] .

So

p(t)=q1q2v(1v2/c2)z^8πc2ϵ01vt(1v2/c2)0π1sin2θ[1+cosθ1(v/c)2sin2θ]sin3θdθp (t)=\frac{q_{1} q_{2} v\left(1-v^{2} / c^{2}\right) \hat{ z }}{8 \pi c^{2} \epsilon_{0}} \frac{1}{v t\left(1-v^{2} / c^{2}\right)} \int_{0}^{\pi} \frac{1}{\sin ^{2} \theta}\left[1+\frac{\cos \theta}{\sqrt{1-(v / c)^{2} \sin ^{2} \theta}}\right] \sin ^{3} \theta d \theta

 

=q1q2z^8πc2ϵ0t{0πsinθdθ+cv0πcosθsinθ(c/v)2sin2θdθ}=\frac{q_{1} q_{2} \hat{ z }}{8 \pi c^{2} \epsilon_{0} t}\left\{\int_{0}^{\pi} \sin \theta d \theta+\frac{c}{v} \int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{(c / v)^{2}-\sin ^{2} \theta}} d \theta\right\} .

 But 0πsinθdθ=2. In the second integral let ucosθ, so du=sinθdθ\text { But } \int_{0}^{\pi} \sin \theta d \theta=2 \text {. In the second integral let } u \equiv \cos \theta, \text { so } d u=-\sin \theta d \theta :

0πcosθsinθ(c/v)2sin2θdθ=11u(c/v)21+u2du=0\int_{0}^{\pi} \frac{\cos \theta \sin \theta}{\sqrt{(c / v)^{2}-\sin ^{2} \theta}} d \theta=\int_{-1}^{1} \frac{u}{\sqrt{(c / v)^{2}-1+u^{2}}} d u=0 (the integrand is odd, and the interval is even).

Conclusion: p(t)=μ0q1q24πtz^p (t)=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t} \hat{ z } (plus a term constant in time).

(d)

F12+F21=14πϵ0q1q2v2t2z^14πϵ0q1q2(1v2/c2)v2t2z^=q1q24πϵ0v2t2(11+v2c2)z^=q1q24πϵ0c2t2z^=μ0q1q24πt2z^F _{12}+ F _{21}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{v^{2} t^{2}} \hat{ z }-\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}\left(1-v^{2} / c^{2}\right)}{v^{2} t^{2}} \hat{ z }=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} v^{2} t^{2}}\left(1-1+\frac{v^{2}}{c^{2}}\right) \hat{ z }=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} c^{2} t^{2}} \hat{ z }=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t^{2}} \hat{ z }.

dpdt=μ0q1q24πt2z^=F12+F21-\frac{d p }{d t}=\frac{\mu_{0} q_{1} q_{2}}{4 \pi t^{2}} \hat{ z }= F _{12}+ F _{21} . qed

 Since q1 is at rest, and q2\text { Since } q_{1} \text { is at rest, and } q_{2} is moving at constant velocity, there must be another force (Fmech )\left( F _{\text {mech }}\right) acting on them, to balance F12+F21F _{12}+ F _{21} ; what we have found is that Fmech =dpem/dt F _{\text {mech }}=d p _{ em } / d t , which means that the impulse imparted to the system by the external force ends up as momentum in the fields. [For further discussion of this problem see J. J. G. Scanio, Am. J. Phys. 43, 258 (1975).]

10.32

Related Answered Questions