Question 9.28: 400 V, 3-phase, 50 Hz, 6 pole induction motor is supplying a...

400 V, 3-phase, 50 Hz, 6 pole induction motor is supplying a load of 20 kW, when the frequency of rotor currents is 2Hz. Estimate (i) Slip and speed at this load (ii) Rotor copper loss (iii) Speed of motor when supplying 30 kW load assuming torque-slip curve to be a straight line.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here, f = 50  Hz; P = 6; f_{r} = 2Hz; Output = 20  kW

Synchronous speed, N_{s} = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000  r.p.m.

Slip, S = \frac{f_{r}}{f} = \frac{2}{50} = 0.04  or,  \mathbf{4\%}

Rotor speed, N = N_{s} – S N_{s} \hspace{30 pt} \hspace{30 pt} \left\lgroup  since  S = \frac{N_{s} – N}{N_{s}} \right\rgroup \\[0.5cm] \hspace{30 pt} \qquad \quad \quad = 1000 – 0.04 \times 1000 = \mathbf{960  rpm}

Rotor  copper  loss = \frac{S}{1 – S} \times mech.  power  developed \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \qquad \, = \frac{0.04}{1 – 0.04} \times 20 = 0.833  kW = \mathbf{833  W}

 

It is given that torque-slip curve to be straight line.

\therefore  T \propto S  as  well  as  T \propto output

 

Hence, S \propto output

\therefore  S_{1} \propto output_{1}  and  S_{2} \propto output_{2}

 

or  \frac{S_{2}}{S_{1}} = \frac{30  kW }{20  kW}

or  S_{2} = \frac{30}{50} \times 0.04

or  S_{2} = 0·06

∴ Speed, N = N_{s} \left(1 – S\right) = 1000 \left(1 – 0.06 \right) = \mathbf{940  rpm}

Related Answered Questions