A) Throughout the solution we will use “2” to indicate the state of the exiting fluid and “1” to indicate the state of the entering fluid. The entropy balance for a reversible turbine is:
\underline{S}_2-\underline{S}_1=0
Using residuals:
0=\underline{S}_2-\underline{S}_1=\left(\underline{S}_2-\underline{S}_2^{i g}\right)+\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right)-\left(\underline{S}_1-\underline{S}_1^{i g}\right)
Assume the exiting fluid ( P=1 bar) is an ideal gas:
0=\underline{S}_2-\underline{S}_1=\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right)-\left(\underline{S}_1-\underline{S}_1^{i g}\right)
According to Appendix C, for butane, \mathrm{T}_{\mathrm{c}}=425.12 \mathrm{~K}, \mathrm{P}_{\mathrm{c}}=37.96 bar and \omega=0.2. Thus:
\begin{aligned}& T_{1, r}=\frac{500 \mathrm{~K}}{425.12 \mathrm{~K}}=1.18 \\& P_{1, r}=\frac{15 \,\mathrm{bar}}{37.96 \,\mathrm{bar}}=0.40\end{aligned}
From Figures 7-18 and 7-19:
\begin{gathered}\left(\underline{S}_1-\underline{S}_1^{i g}\right)=\left(\underline{S}_1-\underline{S}_1^{i g}\right)^0+\omega\left(\underline{S}_1-\underline{S}_1^{i g}\right)^1 \\\frac{\left(\underline{S}_1-\underline{S}_1^{i g}\right)}{R}=-0.2+(0.2)(-0.1)\\\left(\underline{S}_1-\underline{S}_1^{i g}\right)=-1.8 \frac{{J}}{{mol} \,K}\end{gathered}
The ideal gas component is determined starting with equation 4.54.
\begin{aligned}d \underline{S} & =\frac{C_V^*}{T} d T+\frac{R}{\underline{V}} d \underline{V} \\\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right) & =\int_{T_1=500 K}^{T_2} \frac{C_V^*}{T} d T+R \ln \frac{\underline{V}_2}{\underline{V}_1}\end{aligned}
Noting \mathrm{CV}^*=\left(\mathrm{CP}^*-\mathrm{R}\right) and expressing \mathrm{CP}^* in the form of Appendix D :
\begin{aligned}\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right)= & R \int_{T_1=500 K}^{T_2} \frac{(A-1)+B T+C T^2+D T^3+E T^4}{T} d T+R \ln \frac{\frac{R T_2}{P_2}}{\frac{R T_1}{P_1}} \\\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right)= & R\left[(A-1) \ln \frac{T_2}{T_1}+B\left(T_2-T_1\right)+\frac{C\left(T_2^2-T_1^2\right)}{2}+\frac{D\left(T_2^3-T_1^3\right)}{3}\right. \\& \left.+\frac{E\left(T_2^4-T_1^4\right)}{4}\right]+R \ln \frac{P_1 T_2}{P_2 T_1}\end{aligned}
Return to the entropy balance:
0=\underline{S}_2-\underline{S}_1=\left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right)-\left(\underline{S}_1-\underline{S}_1^{i g}\right)
We now have a numerical value for \left(\underline{S}_1-\underline{S}_1^{i g}\right) and an expression for \left(\underline{S}_2^{i g}-\underline{S}_1^{i g}\right) in terms of temperatures and pressures. While it is a long expression, everything is known \left(\mathrm{P}_1=15\right. bar, \mathrm{T}_1=500 \mathrm{~K}, \mathrm{P}_2=1 bar) or available in Appendix D (A, B, C, D and E for butane). Thus, the equation can be solved for T_2, and the result is T_2=419.5 \mathrm{~K}. Two points:
• This is actually the temperature of fluid leaving a reversible turbine- we need to calculate the reversible work and apply the efficiency of 80%.
• Butane is indeed a vapor at 419.5 K and P=1 bar. If we had obtained a temperature that was below the boiling point of butane at P=1 bar, that would tell us we needed to re-do the problem modeling the material exiting the reversible turbine as a liquid-vapor mixture, rather than an ideal gas. Chapter 8 presents a detailed look at vapor pressure.
The energy balance for a reversible turbine is:
\frac{\dot{W}_{s, \text { rev }}}{\dot{n}}=\underline{H_2}-\underline{H_1}
Applying residuals:
\underline{H}_2-\underline{H}_1=\left(\underline{H}_2-\underline{H}_2^{i g}\right)+\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right)
Again assume the butane leaving at 1 bar is an ideal gas:
\begin{gathered}\underline{H_2}-\underline{H_1}=\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right) \\\underline{H_2}-\underline{H_1}=\int_{T_1=500 \mathrm{~K}}^{T_2=419.5 \mathrm{~K}} C_P^* d T-\left(\underline{H}_1-\underline{H}_1^{i g}\right)\end{gathered}
The reduced properties for state 1 were determined previously. Using Figures 6-16 and 6-17:
\begin{gathered}\frac{\left(\underline{H}_1-H_1^{i g}\right)}{R T_c}=\frac{\left(\underline{H}_1-\underline{H}_1^{i g}\right)^0}{R T_c}+\frac{\omega\left(\underline{H}_1-\underline{H}_1^{i g}\right)^1}{R T_c} \\\frac{\left(\underline{H}_1-H_1^{i g}\right)}{R T_c}=-0.3+(0.2)(-0.1)=-1131 \frac{\mathrm{J}}{\mathrm{mol}}\end{gathered}
For the ideal gas portion:
\begin{gathered}\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)=\int_{T_1=500 K}^{T_2=419.5 K} C_P^* d T \\\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)=R \int_{T_1=500 K}^{T_2=419.5 \mathrm{~K}} A+B T+C T^2+D T^3+E T^4 d T=-11,170 \frac{\mathrm{J}}{\mathrm{mol}}\end{gathered}
The residual is ~10% the magnitude of the ideal gas component; it is not negligible and it would not have been valid to assume ideal gas behavior at T=500 K and P=15 bar.
\underline{H}_2-\underline{H}_1=\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right)=-10,039 \frac{\mathrm{J}}{\mathrm{mol}}
To the level of accuracy of the figures and data we used, this is essentially -10 kJ/mol produced by the reversible turbine. Applying the efficiency of 80% gives an actual work of -8 kJ/mol.
B) The fundamental model equations for a turbine- entropy balance, energy balance- do not depend upon the model used for the fluid. Therefore the approach to part B is substantially the same as the approach to part A. We used Lee-Kesler only to calculate numerical values for the residual enthalpy and residual entropy; those are the steps for which we use Peng-Robinson.
As in part A, we assume the residual is 0 for the outlet stream (ideal gas) and calculate the residuals for the inlet stream (T=500 K, P=15 bar) for butane using the expressions in Section 7.2.8. The results are as follows:
\begin{aligned}& \mathrm{a}=1.34 \times 10^7 \mathrm{bar~cm}^6 / \mathrm{mol}^2 \\& \mathrm{~b}=72.4 \mathrm{~cm}^3 / \mathrm{mol} \\& \mathrm{Z}=0.901 \\& \mathrm{~A}=0.116 \\& \mathrm{~B}=0.026 \\\\& \frac{\left(\underline{s}_1-\underline{s}_1^{i g}\right)}{R}=-0.221\end{aligned}
This is essentially identical to the residual entropy in part A, so our outlet temperature from the reversible turbine, as in part A, is T=419.5 K
\begin{aligned}& \frac{\left(\underline{H}_1-\underline{H}_1^{i g}\right)}{R T}=-0.312 \\& \left(\underline{H}_1-\underline{H}_1^{i g}\right)=-1297 \frac{J}{mol}\end{aligned}
The energy balance and ideal gas calculations are the same as in part A, since these do not depend upon the equation of state model used. Introducing the Peng-Robinson value for the residual enthalpy into these calculations:
\begin{gathered}\underline{H}_2-\underline{H}_1=\left(\underline{H}_2^{i g}-\underline{H}_1^{i g}\right)-\left(\underline{H}_1-\underline{H}_1^{i g}\right) \\\underline{H_2}-\underline{H}_1=-11,170 \frac{\mathrm{J}}{\mathrm{mol}}-\left(-1297 \frac{\mathrm{J}}{\mathrm{mol}}\right) \\\underline{H}_2-\underline{H}_1=-9873 \frac{\mathrm{J}}{\mathrm{mol}}\end{gathered}
This is for the reversible turbine. Applying the 80 % efficiency:
\frac{\dot{W}_{s, a c t}}{\dot{n}}=0.8\left(-9873 \frac{\mathrm{J}}{\mathrm{mol}}\right)\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right)=\bf -7.9 \frac{kJ}{mol}