Question 14.14: A 0.2-module, 20° pinion of 42 teeth drives a gear of 90 tee...

A 0.2-module, 20° pinion of 42 teeth drives a gear of 90 teeth. Calculate the contact ratio. Addendum for pinion and gear is equal to one module.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given:  m=0.2 mm , a=20^{\circ}, z_{1}=42, z_{2}=90 .

d_{1}=m z_{1}=0.2 \times 42=8.4 mm , d_{2}=m z_{2}=0.2 \times 90=18 mm .

r_{b 1}=r_{1} \cos \alpha=4.2 \cos 20^{\circ}=3.95 mm , r_{b 2}=r_{2} \cos \alpha=9 \cos 20^{\circ}=8.46 mm .

r_{a 1}=r_{1}+m=4.2+0.2=4.4 mm , r_{a 2}=r_{2}+m=9+0.2=9.2 mm .

\text { Length of path of contact, } L_{p}=\left(r_{a 1}^{2}-r_{b 1}^{2}\right)^{0.5}+\left(r_{a 2}^{2}-r_{b 2}^{2}\right)^{0.5}-\left(r_{1}+r_{2}\right) \sin \alpha .

=\left[(4.4)^{2}-(3.95)^{2}\right]^{0.5}+\left[(9.2)^{2}-(8.46)^{2}\right]^{0.5}-(4.2+9) \sin 20^{\circ} .

=1.9384+3.6150-4.5147=1.0387 mm .

Base pitch,    p_{b}=\frac{2 \pi r_{b 1}}{z_{1}}=2 \pi \times \frac{3.95}{42}=0.5909 mm .

Contact ratio    =\frac{L_{p}}{p_{b}}=\frac{1.0387}{0.5909}=1.758 \simeq 2 .

Related Answered Questions