
Given: S_{u t}=58 kpsi .
Eq. (6-70): S _{e}^{\prime}=0.506(76) L N (1,0.138)=38.5 L N (1,0.138) kpsi
Table 6-13: k _{a}=14.5(76)^{-0.719} L N (1,0.11)=0.644 L N (1,0.11)
Eq. (6-24): d_{e}=0.370(1.5)=0.555 \text { in }
Eq. (6-20): k_{b}=(0.555 / 0.3)^{-0.107}=0.936
Eq. (6-70):
\begin{aligned}& S _{e}=[0.644 L N (1,0.11)](0.936)[38.5 L N (1,0.138)] \\&\bar{S}_{e}=0.644(0.936)(38.5)=23.2 kpsi \\&C_{S e}=\left(0.11^{2}+0.138^{2}\right)^{1 / 2}=0.176 \\& S _{e}=23.2 L N (1,0.176) kpsi\end{aligned}
Table A-16: d / D=0, a / D=(3 / 16) / 1.5=0.125, A=0.80 \therefore K_{t}=2.20 .
From Eqs. (6-78) and (6-79) and Table 6-15
K_{f}=\frac{2.20 L N (1,0.10)}{1+\frac{2(2.20-1)}{2.20} \frac{5 / 76}{\sqrt{0.125}}}=1.83 L N (1,0.10)
Table A-16:
\begin{aligned}Z_{\text {net }} &=\frac{\pi A D^{3}}{32}=\frac{\pi(0.80)\left(1.5^{3}\right)}{32}=0.265 in ^{3} \\\sigma &= K _{f} \frac{M}{Z_{\text {net }}}=1.83 L N (1,0.10)\left(\frac{1.5}{0.265}\right) \\&=10.4 L N (1,0.10) kpsi \\\bar{\sigma} &=10.4 kpsi \\C_{\sigma} &=0.10\end{aligned}
Eq. (5-43), p. 250: z=-\frac{\ln \left[(23.2 / 10.4) \sqrt{\left(1+0.10^{2}\right) /\left(1+0.176^{2}\right)}\right]}{\sqrt{\ln \left[\left(1+0.176^{2}\right)\left(1+0.10^{2}\right)\right]}}=-3.94
Table A-10: p_{f}=0.0000415 \Rightarrow R=1-p_{f}=1-0.0000415=0.99996
__________________________________________________________________________________________________________________
Eq. (6-20): k_{b}= \begin{cases}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\ 0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\ (d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 mm \\ 1.51 d^{-0.157} & 51<d \leq 254 mm \end{cases}
Eq. (6-24): d_{e}=0.370 d
Eq. (6-70): S _{e}^{\prime}= \begin{cases}0.506 \bar{S}_{u t} L N (1,0.138) kpsi \text { or } MPa & \bar{S}_{u t} \leq 212 kpsi (1460 MPa ) \\ 107 L N (1,0.139) kpsi & \bar{S}_{u t}>212 kpsi \\ 740 L N (1,0.139) MPa & \bar{S}_{u t}>1460 MPa \end{cases}
Eq. (6-78) : \bar{K}_{f}=\frac{K_{t}}{1+\frac{2\left(K_{t}-1\right)}{K_{t}} \frac{\sqrt{a}}{\sqrt{r}}}
Eq. (6-79) : K _{f}=\bar{K}_{f} L N \left(1, C_{K_{f}}\right)
Eq. (5-43) : z=-\frac{\mu_{\ln S}-\mu_{\ln \sigma}}{\left(\hat{\sigma}_{\ln S}^{2}+\hat{\sigma}_{\ln \sigma}^{2}\right)^{1 / 2}}=-\frac{\ln \left(\frac{\mu_{S}}{\mu_{\sigma}} \sqrt{\frac{1+C_{\sigma}^{2}}{1+C_{S}^{2}}}\right)}{\sqrt{\ln \left[\left(1+C_{S}^{2}\right)\left(1+C_{\sigma}^{2}\right)\right]}}
Table 6–13
Average Marin Loading
Factor for Torsional
Load |
\bar{S}_{u t}, \text { kpsi } |
k _{ c }^{*} |
50 |
0.535 |
100 |
0.583 |
150 |
0.614 |
200 |
0.636 |
*Average entry 0.59. |
Table 6–15
Heywood’s Parameter
√a and coefficients of
variation C_{K f} for steels |
Notch Type |
\sqrt{ a }(\sqrt{\text { in }}) ,S_{\text {ut }} \text{in kpsi} |
\sqrt{ a }(\sqrt{ m m }) , S_{\text {ut }} \text{in MPa} |
Coefficient of Variation C_{K f} |
Transverse hole |
5 / S_{u t} |
174 / S_{u t} |
0.1 |
Shoulder |
4 / S_{u t} |
139 / S_{u t} |
0.11 |
Groove |
3 / S_{u t} |
104 / S_{u t} |
0.15 |