Question 6.68: A 1 1/2 -in-diameter hot-rolled steel bar has a 3/16 -in dia...

A 1 \frac{1}{2} -in-diameter hot-rolled steel bar has a \frac{3}{16} -in diameter hole drilled transversely through it. The bar is nonrotating and is subject to a completely reversed bending moment of M = 1500 lbf · in in the same plane as the axis of the transverse hole. The material has a mean tensile strength of 76 kpsi. Estimate the reliability. The size factor should be based on the gross size. Use Table A–16 for K_{t} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given:    S_{u t}=58  kpsi .

Eq. (6-70):      S _{e}^{\prime}=0.506(76) L N (1,0.138)=38.5 L N (1,0.138)  kpsi

Table 6-13:      k _{a}=14.5(76)^{-0.719} L N (1,0.11)=0.644 L N (1,0.11)

Eq. (6-24):      d_{e}=0.370(1.5)=0.555 \text { in }

Eq. (6-20):     k_{b}=(0.555 / 0.3)^{-0.107}=0.936

Eq. (6-70):

\begin{aligned}& S _{e}=[0.644 L N (1,0.11)](0.936)[38.5 L N (1,0.138)] \\&\bar{S}_{e}=0.644(0.936)(38.5)=23.2  kpsi \\&C_{S e}=\left(0.11^{2}+0.138^{2}\right)^{1 / 2}=0.176 \\& S _{e}=23.2 L N (1,0.176)  kpsi\end{aligned}

Table A-16d / D=0, a / D=(3 / 16) / 1.5=0.125, A=0.80 \therefore K_{t}=2.20 .

From Eqs. (6-78) and (6-79) and Table 6-15

K_{f}=\frac{2.20 L N (1,0.10)}{1+\frac{2(2.20-1)}{2.20} \frac{5 / 76}{\sqrt{0.125}}}=1.83 L N (1,0.10)

Table A-16:

\begin{aligned}Z_{\text {net }} &=\frac{\pi A D^{3}}{32}=\frac{\pi(0.80)\left(1.5^{3}\right)}{32}=0.265 in ^{3} \\\sigma &= K _{f} \frac{M}{Z_{\text {net }}}=1.83 L N (1,0.10)\left(\frac{1.5}{0.265}\right) \\&=10.4 L N (1,0.10) kpsi \\\bar{\sigma} &=10.4 kpsi \\C_{\sigma} &=0.10\end{aligned}

Eq. (5-43), p. 250:  z=-\frac{\ln \left[(23.2 / 10.4) \sqrt{\left(1+0.10^{2}\right) /\left(1+0.176^{2}\right)}\right]}{\sqrt{\ln \left[\left(1+0.176^{2}\right)\left(1+0.10^{2}\right)\right]}}=-3.94

Table A-10:      p_{f}=0.0000415 \Rightarrow R=1-p_{f}=1-0.0000415=0.99996

__________________________________________________________________________________________________________________

Eq. (6-20): k_{b}= \begin{cases}(d / 0.3)^{-0.107}=0.879 d^{-0.107} & 0.11 \leq d \leq 2 \text { in } \\ 0.91 d^{-0.157} & 2<d \leq 10 \text { in } \\ (d / 7.62)^{-0.107}=1.24 d^{-0.107} & 2.79 \leq d \leq 51 mm \\ 1.51 d^{-0.157} & 51<d \leq 254 mm \end{cases}

Eq. (6-24): d_{e}=0.370 d

Eq. (6-70): S _{e}^{\prime}= \begin{cases}0.506 \bar{S}_{u t} L N (1,0.138) kpsi \text { or } MPa & \bar{S}_{u t} \leq 212 kpsi (1460 MPa ) \\ 107 L N (1,0.139) kpsi & \bar{S}_{u t}>212 kpsi \\ 740 L N (1,0.139) MPa & \bar{S}_{u t}>1460 MPa \end{cases}

Eq. (6-78) : \bar{K}_{f}=\frac{K_{t}}{1+\frac{2\left(K_{t}-1\right)}{K_{t}} \frac{\sqrt{a}}{\sqrt{r}}}

Eq. (6-79) : K _{f}=\bar{K}_{f} L N \left(1, C_{K_{f}}\right)

Eq. (5-43) :  z=-\frac{\mu_{\ln S}-\mu_{\ln \sigma}}{\left(\hat{\sigma}_{\ln S}^{2}+\hat{\sigma}_{\ln \sigma}^{2}\right)^{1 / 2}}=-\frac{\ln \left(\frac{\mu_{S}}{\mu_{\sigma}} \sqrt{\frac{1+C_{\sigma}^{2}}{1+C_{S}^{2}}}\right)}{\sqrt{\ln \left[\left(1+C_{S}^{2}\right)\left(1+C_{\sigma}^{2}\right)\right]}}

 

Table 6–13
Average Marin Loading
Factor for Torsional
Load
\bar{S}_{u t}, \text { kpsi } k _{ c }^{*}
50 0.535
100 0.583
150 0.614
200 0.636
*Average entry 0.59.

 

Table 6–15
Heywood’s Parameter
√a and coefficients of
variation C_{K f} for steels
Notch Type \sqrt{ a }(\sqrt{\text { in }}) ,S_{\text {ut }} \text{in kpsi} \sqrt{ a }(\sqrt{ m m }) , S_{\text {ut }} \text{in MPa} Coefficient of Variation C_{K f}
Transverse hole 5 / S_{u t} 174 / S_{u t} 0.1
Shoulder 4 / S_{u t} 139 / S_{u t} 0.11
Groove 3 / S_{u t} 104 / S_{u t} 0.15

Related Answered Questions