Question 15.43: A 1.25-in.-diameter solid shaft is subjected to an axial for...

A 1.25-in.-diameter solid shaft is subjected to an axial force of P = 360 lb, a vertical force of V = 215 lb, and a concentrated torque of T = 430 lb-in., acting in the directions shown in Fig. P15.43. Assume L = 4.5 in. Determine the normal and shear stresses at (a) point H and (b) point K.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(1.25  in .)^{2}=1.227185  in .^{2} & J=\frac{\pi}{32}(1.25  in .)^{4}=0.239684  in. ^{4} \\Q=\frac{(1.25  in .)^{3}}{12}=0.162760  in .^{3} & I_{y}=I_{z}=\frac{\pi}{64}(1.25  in .)^{4}=0.119842  in .^{4}\end{array}

Equivalent forces at H and K:

\begin{aligned}&F_{x}=360  lb \\&F_{y}=-215  lb \\&F_{z}=0  lb\end{aligned}

 

 

Equivalent moments at H and K:

\begin{aligned}M_{x} &=430  lb – in. \\M_{y} &=0  lb – in . \\M_{z} &=-(215  lb )(4.5  in .)=-967.5  lb – in.\end{aligned}

 

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

(a) Consider point H.
Force F_{x} creates an axial stress at H. The magnitude of this normal stress is:

\sigma_{x}=\frac{360  lb }{1.227185  in .^{2}}=293.354  psi

Force F_{y} does not cause either a normal stress or a shear stress at H.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{(430  lb – in .)(1.25  in . / 2)}{0.239684  in .^{4}}=1,121.267  psi

Moment M _{z}, which is simply a bending moment, creates bending stress at H. The magnitude of this stress is:

\sigma_{x}=\frac{M_{z} y}{I_{z}}=\frac{(967.5  lb – in. )(1.25  in ./ 2)}{0.119842  in .^{4}}=5,045.694  psi

Summary of stresses at H:

\begin{aligned}\sigma_{x} &=293.354  psi +5,045.694  psi \\&=5,339.048  psi =5,340  psi ( T ) \\\sigma_{z} &=0  psi \\\tau_{x z} &=1,121.267  psi =1,121  psi\end{aligned}

 

(b) Consider point K.
Force F _{x} creates an axial stress at K. The magnitude of this normal stress is:

\sigma_{x}=\frac{360  lb }{1.227185  in .^{2}}=293.354  psi

Force F _{y} creates a transverse shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{(215  lb )\left(0.162760  in .^{3}\right)}{\left(0.119842  in .^{4}\right)(1.25  in. )}=233.597  psi

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{(430  lb – in .)(1.25  in. / 2)}{0.239684  in .^{4}}=1,121.267  psi

Moment M _{z} does not create bending stress at K because K is located on the neutral axis for bending about the z axis.

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=293.354  psi =293  psi ( T ) \\\sigma_{y} &=0  psi \\\tau_{x y} &=-233.597  psi -1,121.267  psi \\&=-1,354.864  psi =-1,355  psi\end{aligned}

 

 

 

 

 

 

Related Answered Questions